AoPS Community

Regional Competition For Advanced Students 2003

www.artofproblemsolving.com/community/c1044444
by FelixD

1 Find the minimum value of the expression $\frac{a+1}{a(a+2)}+\frac{b+1}{b(b+2)}+\frac{c+1}{c(c+2)}$, where a, b, c are positive real numbers with $a+b+c \leq 3$.

2 Find all prime numbers p with $5^{p}+4 p^{4}$ is the square of an integer.
3 Given are two parallel lines g and h and a point P, that lies outside of the corridor bounded by g and h. Construct three lines g_{1}, g_{2} and g_{3} through the point P. These lines intersect g in A_{1}, A_{2}, A_{3} and h in B_{1}, B_{2}, B_{3} respectively. Let C_{1} be the intersection of the lines $A_{1} B_{2}$ and $A_{2} B_{1}, C_{2}$ be the intersection of the lines $A_{1} B_{3}$ and $A_{3} B_{1}$ and let C_{3} be the intersection of the lines $A_{2} B_{3}$ and $A_{3} B_{2}$. Show that there exists exactly one line n, that contains the points C_{1}, C_{2}, C_{3} and that n is parallel to g and h.

4 For every real number b determine all real numbers x satisfying $x-b=\sum_{k=0}^{\infty} x^{k}$.

