AoPS Community

2002 Regional Competition For Advanced Students

Regional Competition For Advanced Students 2002

www.artofproblemsolving.com/community/c1044486
by parmenides51

1 Find the smallest natural number $x>0$ so that all following fractions are simplified $\frac{3 x+9}{8}, \frac{3 x+10}{9}, \frac{3 x+11}{10}, \ldots, \frac{3}{}$, i.e. numerators and denominators are relatively prime.

2 Solve the following system of equations over the real numbers: $2 x_{1}=x_{5}^{2}-234 x_{2}=x_{1}^{2}+7$ $6 x_{3}=x_{2}^{2}+148 x_{4}=x_{3}^{2}+2310 x_{5}=x_{4}^{2}+34$

3 In the convex $A B C D E F$ (has all interior angles less than 180°) with the perimeter s the triangles $A C E$ and $B D F$ have perimeters u and v respectively.
a) Show the inequalities $\frac{1}{2} \leq \frac{s}{u+v} \leq 1$
b) Check whether 1 is replaced by a smaller number or $1 / 2$ by a larger number can the inequality remains valid for all convex hexagons.

4 Let $a_{0}, a_{1}, \ldots, a_{2002}$ be real numbers.
a) Show that the smallest of the values $a_{k}\left(1-a_{2002-k}\right)(0 \leq k \leq 2002)$ the following applies: it is smaller or equal to $1 / 4$.
b) Does this statement always apply to the smallest of the values $a_{k}\left(1-a_{2003-k}\right)(1 \leq k \leq 2002)$?
c) Show for positive real numbers $a_{0}, a_{1}, \ldots, a_{2002}$:
the smallest of the values $a_{k}\left(1-a_{2003-k}\right)(1 \leq k \leq 2002)$ is less than or equal to $1 / 4$.

