## AoPS Community

## Czech And Slovak Mathematical Olympiad, Round III, Category A 2005

www.artofproblemsolving.com/community/c1044715
by parmenides51

1 Consider all arithmetical sequences of real numbers $\left(x_{i}\right)^{\infty}=1$ and $\left(y_{i}\right)^{\infty}=1$ with the common first term, such that for some $k>1, x_{k-1} y_{k-1}=42, x_{k} y_{k}=30$, and $x_{k+1} y_{k+1}=16$. Find all such pairs of sequences with the maximum possible $k$.

2 Determine for which $m$ there exist exactly $2^{15}$ subsets $X$ of $\{1,2, \ldots, 47\}$ with the following property: $m$ is the smallest element of $X$, and for every $x \in X$, either $x+m \in X$ or $x+m>47$.

3 In a trapezoid $A B C D$ with $A B / / C D, E$ is the midpoint of $B C$. Prove that if the quadrilaterals $A B E D$ and $A E C D$ are tangent, then the sides $a=A B, b=B C, c=C D, d=D A$ of the trapezoid satisfy the equalities $a+c=\frac{b}{3}+d$ and $\frac{1}{a}+\frac{1}{c}=\frac{3}{b}$.

4 An acute-angled triangle $A K L$ is given on a plane. Consider all rectangles $A B C D$ circumscribed to triangle $A K L$ such that point $K$ lies on side $B C$ and point $L$ lieson side $C D$. Find the locus of the intersection $S$ of the diagonals $A C$ and $B D$.
$5 \quad$ Let $p, q, r, s$ be real numbers with $q \neq-1$ and $s \neq-1$. Prove that the quadratic equations $x^{2}+$ $p x+q=0$ and $x^{2}+r x+s=0$ have a common root, while their other roots are inverse of each other, if and only if $p r=(q+1)(s+1)$ and $p(q+1) s=r(s+1) q$.
(A double root is counted twice.)
6 Decide whether for every arrangement of the numbers $1,2,3, \ldots, 15$ in a sequence one can color these numbers with at most four different colors in such a way that the numbers of each color form a monotone subsequence.

