AoPS Community

The problems from the CCA Math Bonanza held on 1/18/2020
www.artofproblemsolving.com/community/c1051101
by mira74

- Individual Round

I1 An ant is crawling along the coordinate plane. Each move, it moves one unit up, down, left, or right with equal probability. If it starts at $(0,0)$, what is the probability that it will be at either $(2,1)$ or $(1,2)$ after 6 moves?

2020 CCA Math Bonanza Individual Round\#1

I2 Circles ω and γ are drawn such that ω is internally tangent to γ, the distance between their centers are 5 , and the area inside of γ but outside of ω is 100π. What is the sum of the radii of the circles?

2020 CCA Math Bonanza Individual Round\#2

I3 Compute the remainder when $\left(\frac{2^{5}}{2}\right)^{5}$ is divided by 5 .
2020 CCA Math Bonanza Individual Round\#3
14 Alan, Jason, and Shervin are playing a game with MafsCounts questions. They each start with 2 tokens. In each round, they are given the same MafsCounts question. The first person to solve the MafsCounts question wins the round and steals one token from each of the other players in the game. They all have the same probability of winning any given round. If a player runs out of tokens, they are removed from the game. The last player remaining wins the game.

If Alan wins the first round but does not win the second round, what is the probability that he wins the game?

2020 CCA Math Bonanza Individual Round\#4

AoPS Community

2020 CCA Math Bonanza

I5 Let $f(x)=x^{2}-k x+(k-1)^{2}$ for some constant k. What is the largest possible real value of k such that f has at least one real root?

2020 CCA Math Bonanza Individual Round\#5

I6 Let P be a point outside a circle Γ centered at point O, and let $P A$ and $P B$ be tangent lines to circle Γ. Let segment $P O$ intersect circle Γ at C. A tangent to circle Γ through C intersects $P A$ and $P B$ at points E and F, respectively. Given that $E F=8$ and $\angle A P B=60^{\circ}$, compute the area of $\triangle A O C$.
2020 CCA Math Bonanza Individual Round\#6
17 Define the binary operation $a \Delta b=a b+a-1$. Compute

$$
10 \Delta(10 \Delta(10 \Delta(10 \Delta(10 \Delta(10 \Delta(10 \Delta(10 \Delta(10 \Delta 10))))))))
$$

where 10 is written 10 times.
2020 CCA Math Bonanza Individual Round\#7
18 Compute the remainder when the largest integer below $\frac{3^{123}}{5}$ is divided by 16 . 2020 CCA Math Bonanza Individual Round\#8

19 A sequence a_{n} of real numbers satisfies $a_{1}=1, a_{2}=0$, and $a_{n}=\left(S_{n-1}+1\right) S_{n-2}$ for all integers $n \geq 3$, where $S_{k}=a_{1}+a_{2}+\cdots+a_{k}$ for positive integers k. What is the smallest integer $m>2$ such that 127 divides a_{m} ?

2020 CCA Math Bonanza Individual Round\#9
110 Annie takes a 6 question test, with each question having two parts each worth 1 point. On each part, she receives one of nine letter grades $\{A, B, C, D, E, F, G, H, I\}$ that correspond to a unique numerical score. For each question, she receives the sum of her numerical scores on both parts. She knows that A corresponds to $1, \mathrm{E}$ corresponds to 0.5 , and I corresponds to 0 .

When she receives her test, she realizes that she got two of each of A, E, and I, and she is able to determine the numerical score corresponding to all 9 markings. If n is the number of ways she can receive letter grades, what is the exponent of 2 in the prime factorization of n ?

2020 CCA Math Bonanza Individual Round\#10

111 Points C, A, D, M, E, B, F lie on a line in that order such that $C A=A D=E B=B F=1$ and M is the midpoint of $D B$. Let X be a point such that a quarter circle arc exists with center D and endpoints C, X. Suppose that line $X M$ is tangent to the unit circle centered at B. Compute $A B$.

2020 CCA Math Bonanza Individual Round\#11

AoPS Community

112 Find all pairs (a, b) of positive integers satisfying the following conditions:
$-a \leq b$

- $a b$ is a perfect cube
- No divisor of a or b is a perfect cube greater than 1
$-a^{2}+b^{2}=85 \mathrm{Icm}(a, b)$

2020 CCA Math Bonanza Individual Round\#12

113 Let n be a positive integer. Compute, in terms of n, the number of sequences $\left(x_{1}, \ldots, x_{2 n}\right)$ with each $x_{i} \in\{0,1,2,3,4\}$ such that $x_{1}^{2}+\cdots+x_{2 n}^{2}$ is divisible by 5 .

2020 CCA Math Bonanza Individual Round\#13
114 An ant starts at the point $(0,0)$ in the coordinate plane. It can make moves from lattice point $\left(x_{1}, y_{1}\right)$ to lattice point $\left(x_{2}, y_{2}\right)$ whenever $x_{2} \geq x_{1}, y_{2} \geq y_{1}$, and $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$. For all nonnegative integers m, n, define $a_{m, n}$ to be the number of possible sequences of moves from $(0,0)$ to (m, n) (e.g. $a_{0,0}=1$ and $a_{1,1}=3$). Compute

$$
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{a_{m, n}}{10^{m+n}} .
$$

2020 CCA Math Bonanza Individual Round\#14

115 Let θ be an obtuse angle with $\sin \theta=\frac{3}{5}$. If an ant starts at the origin and repeatedly moves 1 unit and turns by an angle of θ, there exists a region R in the plane such that for every point $P \in R$ and every constant $c>0$, the ant is within a distance c of P at some point in time (so the ant gets arbitrarily close to every point in the set). What is the largest possible area of R ? 2020 CCA Math Bonanza Individual Round\#15

- Team Round

T1 Compute the number of permutations of $\{1,2,3\}$ with the property that there is some number that can be removed such that the remaining numbers are in increasing order. For example, $(2,1,3)$ has this property because removing 1 leaves $(2,3)$, which is in increasing order.

2020 CCA Math Bonanza Team Round\#1

T2 The base 4 repeating decimal $0 . \overline{12}_{4}$ can be expressed in the form $\frac{a}{b}$ in base 10 , where a and b are relatively prime positive integers. Compute the sum of a and b.

2020 CCA Math Bonanza Team Round\#2

T3 Five unit squares are arranged in a plus shape as shown below:

What is the area of the smallest circle containing the interior and boundary of the plus shape? 2020 CCA Math Bonanza Team Round\#3

T4 Compute

$$
\left(\frac{4-\log _{36} 4-\log _{6} 18}{\log _{4} 3}\right) \cdot\left(\log _{8} 27+\log _{2} 9\right) .
$$

2020 CCA Math Bonanza Team Round\#4

T5 Find all pairs of real numbers (x, y) satisfying both equations

$$
\begin{gathered}
3 x^{2}+3 x y+2 y^{2}=2 \\
x^{2}+2 x y+2 y^{2}=1
\end{gathered}
$$

2020 CCA Math Bonanza Team Round\#5
T6 A cat can see 1 mile in any direction. The cat walks around the 13 mile perimeter of a triangle. Over the course of its walk, it sees every point inside of this triangle. What is the largest possible area, in square miles, of the total region it sees?
2020 CCA Math Bonanza Team Round\#6
T7 Compute the remainder when $99989796 \ldots 121110090807 \ldots 01$ is divided by $010203 \ldots 091011 \ldots 9798$ (note that the first one starts at 99, and the second one ends at 98).
2020 CCA Math Bonanza Team Round\#7
T8 Call an ordered triple (a, b, c) [i] d-tall $[/ \mathrm{i}]$ if there exists a triangle with side lengths a, b, c and the height to the side with length a is d. Suppose that for some positive integer k, there are exactly $210 k$-tall ordered triples of positive integers. How many k-tall ordered triples (a, b, c) are there such that a triangle $A B C$ with $B C=a, C A=b, A B=c$ satisfies both $\angle B<90^{\circ}$ and $\angle C<90^{\circ}$?
2020 CCA Math Bonanza Team Round\#8

AoPS Community

2020 CCA Math Bonanza

T9 A game works as follows: the player pays 2 tokens to enter the game. Then, a fair coin is flipped. If the coin lands on heads, they receive 3 tokens; if the coin lands on tails, they receive nothing. A player starts with 2 tokens and keeps playing this game until they do not have enough tokens to play again. What is the expected value of the number of tokens they have left at the end?

2020 CCA Math Bonanza Team Round\#9
T10 In $\triangle A B C$ with an obtuse angle at A, let D be the foot of the A altitude and E be the foot of the B altitude. If $A C+C D=D B$ and $B C-A E=E C$, compute $\angle A$ in degrees.

2020 CCA Math Bonanza Team Round\#10

- Lightning Round

L1.1 We know that 201 and 9 give the same remainder when divided by 24 . What is the smallest positive integer k such that $201+k$ and $9+k$ give the same remainder when divided by 24 ? 2020 CCA Math Bonanza Lightning Round\#1. 1

L1.2 Let $a_{1}=3, a_{2}=7$, and $a_{3}=1$. Let $b_{0}=0$ and for all positive integers n, let $b_{n}=10 b_{n-1}+a_{n}$. Compute $b_{1} \times b_{2} \times b_{3}$.

2020 CCA Math Bonanza Lightning Round\#1. 2
L1.3 If $A B C D E$ is a regular pentagon and X is a point in its interior such that $C D X$ is equilateral, compute $\angle A X E$ in degrees.

2020 CCA Math Bonanza Lightning Round\#1. 3

L1.4 Let $A B C$ be a triangle with $A B=3, B C=4$, and $C A=5$. Points A_{1}, B_{1}, and C_{1} are chosen on its incircle. Compute the maximum possible sum of the areas of triangles $A_{1} B C, A B_{1} C$, and $A B C_{1}$.

2020 CCA Math Bonanza Lightning Round\#1. 4
L2.1 We know that 201 and 9 give the same remainder when divided by 24 . What is the smallest positive integer k such that $201+k$ and $9+k$ give the same remainder when divided by $24+k$? 2020 CCA Math Bonanza Lightning Round\#2.1

L2.2 A rectangular box with side lengths 1,2 , and 16 is cut into two congruent smaller boxes with integer side lengths. Compute the square of the largest possible length of the space diagonal of one of the smaller boxes.
2020 CCA Math Bonanza Lightning Round\#2.2

AoPS Community

2020 CCA Math Bonanza

L2.3 3 uncoordinated aliens launch a 3-day attack on 4 galaxies. Each day, each of the three aliens chooses a galaxy uniformly at random from the remaining galaxies and destroys it. They make their choice simultaneously and independently, so two aliens could destroy the same galaxy. If the probability that every galaxy is destroyed by the end of the attack can be expressed as $\frac{m}{n}$ for relatively prime positive integers m, n, what is $m+n$?

2020 CCA Math Bonanza Lightning Round\#2.3

L2.4 If

$$
\sum_{k=1}^{1000}\left(\frac{k+1}{k}+\frac{k}{k+1}\right)=\frac{m}{n}
$$

for relatively prime positive integers m, n, compute $m+n$.
2020 CCA Math Bonanza Lightning Round\#2.4
L3.1 For some positive integer n, the sum of all odd positive integers between $n^{2}-n$ and $n^{2}+n$ is a number between 9000 and 10000, inclusive. Compute n.

2020 CCA Math Bonanza Lightning Round\#3.1
L3.2 Archit and Ayush are walking around on the set of points (x, y) for all integers $-1 \leq x, y \leq 1$. Archit starts at $(1,1)$ and Ayush starts at $(1,0)$. Each second, they move to another point in the set chosen uniformly at random among the points with distance 1 away from them. If the probability that Archit goes to the point $(0,0)$ strictly before Ayush does can be expressed as $\frac{m}{n}$ for relatively prime positive integers m, n, compute $m+n$.
2020 CCA Math Bonanza Lightning Round\#3.2
L3.3 Compute the largest prime factor of $111^{2}+11^{3}+1^{1}$.
2020 CCA Math Bonanza Lightning Round\#3.3
L3.4 Willy Wonka has n distinguishable pieces of candy that he wants to split into groups. If the number of ways for him to do this is $p(n)$, then we have

n	1	2	3	4	5	6	7	8	9	10
$p(n)$	1	2	5	15	52	203	877	4140	21147	115975
Define a splitting of the n dis-										

tinguishable pieces of candy to be a way of splitting them into groups. If Willy Wonka has 8 candies, what is the sum of the number of groups over all splittings he can use?

2020 CCA Math Bonanza Lightning Round\#3.4

L4.1 Alice picks a number uniformly at random from the first 5 even positive integers, and Palice picks a number uniformly at random from the first 5 odd positive integers. If Alice picks a larger
number than Palice with probability $\frac{m}{n}$ for relatively prime positive integers m, n, compute $m+$ n.

2020 CCA Math Bonanza Lightning Round\#4.1

L4.2 Let a_{0}, a_{1}, \ldots be a sequence of positive integers such that $a_{0}=1$, and for all positive integers n, a_{n} is the smallest composite number relatively prime to all of $a_{0}, a_{1}, \ldots, a_{n-1}$. Compute a_{10}.

2020 CCA Math Bonanza Lightning Round\#4.2

L4.3 Let $A B C D$ be a convex quadrilateral such that $A B=4, B C=5, C A=6$, and $\triangle A B C$ is similar to $\triangle A C D$. Let P be a point on the extension of $D A$ past A such that $\angle B D C=\angle A C P$. Compute $D P^{2}$.
2020 CCA Math Bonanza Lightning Round\#4.3
L4.4 A sequence $\left\{a_{n}\right\}$ is defined such that $a_{i}=i$ for $i=1,2,3 \ldots, 2020$ and for $i>2020, a_{i}$ is the average of the previous 2020 terms. What is the largest integer less than or equal to $\lim _{n \rightarrow \infty} a_{n}$? 2020 CCA Math Bonanza Lightning Round\#4.4

L5.1 Professor Shian Bray is buying CCA Math Bananas ${ }^{\text {TM }}$. He starts with $\$ 500$. The first CCA Math Bananas ${ }^{\text {TM }}$ he buys costs $\$ 1$. Each time after he buys a CCA Math Banana ${ }^{\text {TM }}$, the cost of a CCA Math Bananas ${ }^{T M}$ doubles with probability $\frac{1}{2}$ (otherwise staying the same). Professor Bray buys CCA Math Bananas ${ }^{T M}$ until he cannot afford any more, ending with n CCA Math Bananas ${ }^{T M}$. Estimate the expected value of n. An estimate of E earns $2^{1-0.25|E-A|}$ points, where A is the actual answer.

2020 CCA Math Bonanza Lightning Round\#5.1
L5.2 A teacher writes the positive integers from 1 to 12 on a blackboard. Every minute, they choose a number k uniformly at random from the written numbers, subtract k from each number $n \geq k$ on the blackboard (without touching the numbers $n<k$), and erase every 0 on the board. Estimate the expected number of minutes that pass before the board is empty. An estimate of E earns $2^{1-0.5|E-A|}$ points, where A is the actual answer.

2020 CCA Math Bonanza Lightning Round\#5.2

L5.3 Estimate the number of pairs of integers $1 \leq a, b \leq 1000$ satisfying $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+1, b+1)$. An estimate of E earns $2^{1-0.00002|E-A|}$ points, where A is the actual answer.
2020 CCA Math Bonanza Lightning Round\#5.3
L5.4 Submit a positive integer less than or equal to 15 . Your goal is to submit a number that is close to the number of teams submitting it. If you submit N and the total number of teams at the competition (including your own team) who submit N is T, your score will be $\frac{2}{0.5|N-T|+1}$.

2020 CCA Math Bonanza Lightning Round\#5.4

- \quad Tiebreaker Round

TB1 In a group of 2020 people, some pairs of people are friends (friendship is mutual). It is known that no two people (not necessarily friends) share a friend. What is the maximum number of unordered pairs of people who are friends?
2020 CCA Math Bonanza Tiebreaker Round\#1
TB2 Shayan is playing a game by himself. He picks relatively prime integers a and b such that $1<a<b<2020$. He wins if every integer $m \geq \frac{a b}{2}$ can be expressed in the form $a x+b y$ for nonnegative integers x and y. He hasn't been winning often, so he decides to write down all winning pairs (a, b), from $\left(a_{1}, b_{1}\right)$ to $\left(a_{n}, b_{n}\right)$. What is $b_{1}+b_{2}+\ldots+b_{n}$?

2020 CCA Math Bonanza Tiebreaker Round\#2
TB3 How many unordered triples A, B, C of distinct lattice points in $0 \leq x, y \leq 4$ have the property that $2[A B C]$ is an integer divisible by 5 ?
2020 CCA Math Bonanza Tiebreaker Round\#3
TB3 Let $A B C$ be a triangle with $A B=13, B C=14$, and $C A=15$. The incircle of $A B C$ meets $B C$ at D. Line $A D$ meets the circle through B, D, and the reflection of C over $A D$ at a point $P \neq D$. Compute $A P$.
2020 CCA Math Bonanza Tiebreaker Round\#4

