AoPS Community

Mathematical Olympiad 2020

www.artofproblemsolving.com/community/c1052174
by InternetPerson10

1 A T-tetromino is formed by adjoining three unit squares to form a 1×3 rectangle, and adjoining on top of the middle square a fourth unit square.
Determine the least number of unit squares that must be removed from a 202×202 grid so that it can be tiled using T-tetrominoes.

2 Determine all positive integers k for which there exist positive integers r and s that satisfy the equation

$$
\left(k^{2}-6 k+11\right)^{r-1}=(2 k-7)^{s} .
$$

3 Define the sequence $\left\{a_{i}\right\}$ by $a_{0}=1, a_{1}=4$, and $a_{n+1}=5 a_{n}-a_{n-1}$ for all $n \geq 1$. Show that all terms of the sequence are of the form $c^{2}+3 d^{2}$ for some integers c and d.

4 Let $\triangle A B C$ be an acute triangle with circumcircle Γ and D the foot of the altitude from A. Suppose that $A D=B C$. Point M is the midpoint of $D C$, and the bisector of $\angle A D C$ meets $A C$ at N. Point P lies on Γ such that lines $B P$ and $A C$ are parallel. Lines $D N$ and $A M$ meet at F, and line $P F$ meets Γ again at Q. Line $A C$ meets the circumcircle of $\triangle P N Q$ again at E. Prove that $\angle D Q E=90^{\circ}$.

