AoPS Community

Finals 1987

www.artofproblemsolving.com/community/c1052251
by parmenides51

- Day 1

1 There are $n \geq 2$ points in a square side 1 . Show that one can label the points $P_{1}, P_{2}, \ldots, P_{n}$ such that $\sum_{i=1}^{n}\left|P_{i-1}-P_{i}\right|^{2} \leq 4$, where we use cyclic subscripts, so that P_{0} means P_{n}.

2 A regular n-gon is inscribed in a circle radius 1 . Let X be the set of all arcs $P Q$, where P, Q are distinct vertices of the n-gon. 5 elements $L_{1}, L_{2}, \ldots, L_{5}$ of X are chosen at random (so two or more of the L_{i} can be the same). Show that the expected length of $L_{1} \cap L_{2} \cap L_{3} \cap L_{4} \cap L_{5}$ is independent of n.
$3 \quad w(x)$ is a polynomial with integer coefficients. Let p_{n} be the sum of the digits of the number $w(n)$. Show that some value must occur infinitely often in the sequence $p_{1}, p_{2}, p_{3}, \ldots$.

- Day 2

4 Let S be the set of all tetrahedra which satisfy:
(1) the base has area 1 ,
(2) the total face area is 4, and
(3) the angles between the base and the other three faces are all equal.

Find the element of S which has the largest volume.
$5 \quad$ Find the smallest n such that $n^{2}-n+11$ is the product of four primes (not necessarily distinct).
$6 \quad$ A plane is tiled with regular hexagons of side 1. A is a fixed hexagon vertex.
Find the number of paths P such that:
(1) one endpoint of P is A,
(2) the other endpoint of P is a hexagon vertex,
(3) P lies along hexagon edges,
(4) P has length 60 , and
(5) there is no shorter path along hexagon edges from A to the other endpoint of P.

