Art of Problem Solving

AoPS Community

Czech-Polish-Slovak Junior Match 2019

www.artofproblemsolving.com/community/c1052290
by parmenides51

- Individual

1 Find all pairs of positive integers a, b such that $\sqrt{a+2 \sqrt{b}}=\sqrt{a-2 \sqrt{b}}+\sqrt{b}$

2 Let $A B C$ be a triangle with centroid T. Denote by M the midpoint of $B C$. Let D be a point on the ray opposite to the ray $B A$ such that $A B=B D$. Similarly, let E be a point on the ray opposite to the ray $C A$ such that $A C=C E$. The segments $T D$ and $T E$ intersect the side $B C$ in P and Q, respectively. Show that the points P, Q and M split the segment $B C$ into four parts of equal length.

3 Determine all positive integers n such that it is possible to fill the $n \times n$ table with numbers 1,2 and -3 so that the sum of the numbers in each row and each column is 0 .
$4 \quad$ Let k be a circle with diameter $A B$. A point C is chosen inside the segment $A B$ and a point D is chosen on k such that $B C D$ is an acute-angled triangle, with circumcentre denoted by O. Let E be the intersection of the circle k and the line $B O$ (different from B). Show that the triangles $B C D$ and $E C A$ are similar.
$5 \quad$ Given is a group in which everyone has exactly d friends and every two strangers have exactly one common friend. Prove that there are at most $d^{2}+1$ people in this group.

- Team

1 Rational numbers a, b are such that $a+b$ and $a^{2}+b^{2}$ are integers. Prove that a, b are integers.
2 The chess piece sick rook can move along rows and columns as a regular rook, but at most by 2 fields. We can place sick rooks on a square board in such a way that no two of them attack each other and no field is attacked by more than one sick rook.
a) Prove that on 30×30 board, we cannot place more than 100 sick rooks.
b) Find the maximum number of sick rooks which can be placed on 8×8 board.
c) Prove that on 32×32 board, we cannot place more than 120 sick rooks.

3 Let $A B C D$ be a convex quadrilateral with perpendicular diagonals, such that $\angle B A C=\angle A D B$, $\angle C B D=\angle D C A, A B=15, C D=8$. Show that $A B C D$ is cyclic and find the distance between its circumcenter and the intersection point of its diagonals.

4 Determine all possible values of the expression $x y+y z+z x$ with real numbers x, y, z satisfying the conditions $x^{2}-y z=y^{2}-z x=z^{2}-x y=2$.

5 Let $A_{1} A_{2} \ldots A_{360}$ be a regular 360-gon with centre S. For each of the triangles $A_{1} A_{50} A_{68}$ and $A_{1} A_{50} A_{69}$ determine, whether its images under some 120 rotations with centre S can have (as triangles) all the 360 points $A_{1}, A_{2}, \ldots, A_{360}$ as vertices.

6 Given is a cyclic quadrilateral $A B C D$. Points K, L, M, N lying on sides $A B, B C, C D, D A$, respectively, satisfy $\angle A D K=\angle B C K, \angle B A L=\angle C D L, \angle C B M=\angle D A M, \angle D C N=\angle A B N$. Prove that lines $K M$ and $L N$ are perpendicular.

