Art of Problem Solving

AoPS Community

Czech-Polish-Slovak Junior Match 2016

www.artofproblemsolving.com/community/c1052356
by parmenides51

- Individual

1 Let $A B$ be a given segment and M be its midpoint. We consider the set of right-angled triangles $A B C$ with hypotenuses $A B$. Denote by D the foot of the altitude from C. Let K and L be feet of perpendiculars from D to the legs $B C$ and $A C$, respectively. Determine the largest possible area of the quadrilateral $M K C L$.

Czech Republic
$2 \quad$ Let x and y be real numbers such that $x^{2}+y^{2}-1<x y$. Prove that $x+y-|x-y|<2$.
Slovakia
3 Find all integers $n \geq 3$ with the following property.
it is possible to assign pairwise different positive integers to the vertices of an n-gonal prism in such a way that vertices with labels a and b are connected by an edge if and only if $a \mid b$ or $b \mid a$.
Poland
4 We are given an acute-angled triangle $A B C$ with $A B<A C<B C$. Points K and L are chosen on segments $A C$ and $B C$, respectively, so that $A B=C K=C L$. Perpendicular bisectors of segments $A K$ and $B L$ intersect the line $A B$ at points P and Q, respectively. Segments $K P$ and $L Q$ intersect at point M. Prove that $A K+K M=B L+L M$.

Poland
5 Determine the smallest integer j such that it is possible to fill the fields of the table 10×10 with numbers from 1 to 100 so that every 10 consecutive numbers lie in some of the $j \times j$ squares of the table.

Czech Republic

- Team

1 Let $A B C$ be a right-angled triangle with hypotenuse $A B$. Denote by D the foot of the altitude from C. Let Q, R, and P be the midpoints of the segments $A D, B D$, and $C D$, respectively. Prove that $\angle A P B+\angle Q C R=180^{\circ}$.

Czech Republic

2 Find the largest integer d divides all three numbers $a b c, b c a$ and $c a b$ with a, b and c being some nonzero and mutually different digits.

Czech Republic
3 On a plane several straight lines are drawn in such a way that each of them intersects exactly 15 other lines. How many lines are drawn on the plane? Find all possibilities and justify your answer.

Poland
4 Several tiles congruent to the one shown in the picture below are to be fit inside a 11×11 square table, with each tile covering 6 whole unit squares, no sticking out the square and no overlapping.
(a) Determine the greatest number of tiles which can be placed this way.
(b) Find, with a proof, all unit squares which have to be covered in any tiling with the maximal number of tiles.
https://cdn.artofproblemsolving.com/attachments/c/d/23d93e9d05eab94925fc54006fe05123f0db
png
Poland
5 Let $A B C$ be a triangle with $A B: A C: B C=5: 5: 6$. Denote by M the midpoint of $B C$ and by N the point on the segment $B C$ such that $B N=5 \cdot C N$. Prove that the circumcenter of triangle $A B N$ is the midpoint of the segment connecting the incenters of triangles $A B C$ and $A B M$.
Slovakia
6 Let k be a given positive integer. Find all triples of positive integers a, b, c, such that $a+b+c=$ $3 k+1, a b+b c+c a=3 k^{2}+2 k$.
Slovakia

