AoPS Community

Finals 1985

www.artofproblemsolving.com/community/c1053238
by parmenides51

- Day 1

1 Find the largest k such that for every positive integer n we can find at least k numbers in the set $\{n+1, n+2, \ldots, n+16\}$ which are coprime with $n(n+17)$.

2 Given a square side 1 and $2 n$ positive reals $a_{1}, b_{1}, \ldots, a_{n}, b_{n}$ each ≤ 1 and satisfying $\sum a_{i} b_{i} \geq$ 100 . Show that the square can be covered with rectangles R_{i} with sides length $\left(a_{i}, b_{i}\right)$ parallel to the square sides.
$3 \quad$ The function $f: R \rightarrow R$ satisfies $f(3 x)=3 f(x)-4 f(x)^{3}$ for all real x and is continuous at $x=0$. Show that $|f(x)| \leq 1$ for all x.

- Day 2

$4 \quad P$ is a point inside the triangle $A B C$ is a triangle. The distance of P from the lines $B C, C A, A B$ is d_{a}, d_{b}, d_{c} respectively. If r is the inradius, show that

$$
\frac{2}{\frac{1}{d_{a}}+\frac{1}{d_{b}}+\frac{1}{d_{c}}}<r<\frac{d_{a}+d_{b}+d_{c}}{2}
$$

$5 \quad p(x, y)$ is a polynomial such that $p(\cos t, \sin t)=0$ for all real t.
Show that there is a polynomial $q(x, y)$ such that $p(x, y)=\left(x^{2}+y^{2}-1\right) q(x, y)$.
6 There is a convex polyhedron with k faces.
Show that if more than $k / 2$ of the faces are such that no two have a common edge, then the polyhedron cannot have an inscribed sphere.

