Art of Problem Solving

IMO 2015

www.artofproblemsolving.com/community/c105780
by jgf1 123, randomusername, termas, samithayohan, rrusczyk, codyj

- Day 1

1 We say that a finite set \mathcal{S} of points in the plane is balanced if, for any two different points A and B in \mathcal{S}, there is a point C in \mathcal{S} such that $A C=B C$. We say that \mathcal{S} is centre-free if for any three different points A, B and C in \mathcal{S}, there is no points P in \mathcal{S} such that $P A=P B=P C$.
(a) Show that for all integers $n \geq 3$, there exists a balanced set consisting of n points.
(b) Determine all integers $n \geq 3$ for which there exists a balanced centre-free set consisting of n points.

Proposed by Netherlands
2 Find all positive integers (a, b, c) such that

$$
a b-c, \quad b c-a, \quad c a-b
$$

are all powers of 2 .
Proposed by Serbia
3 Let $A B C$ be an acute triangle with $A B>A C$. Let Γ be its circumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint of $B C$. Let Q be the point on Γ such that $\angle H Q A=90^{\circ}$ and let K be the point on Γ such that $\angle H K Q=90^{\circ}$. Assume that the points A, B, C, K and Q are all different and lie on Γ in this order.
Prove that the circumcircles of triangles $K Q H$ and $F K M$ are tangent to each other.
Proposed by Ukraine

- Day 2

4 Triangle $A B C$ has circumcircle Ω and circumcenter O. A circle Γ with center A intersects the segment $B C$ at points D and E, such that B, D, E, and C are all different and lie on line $B C$ in this order. Let F and G be the points of intersection of Γ and Ω, such that A, F, B, C, and G lie on Ω in this order. Let K be the second point of intersection of the circumcircle of triangle $B D F$ and the segment $A B$. Let L be the second point of intersection of the circumcircle of triangle $C G E$ and the segment $C A$.

Suppose that the lines $F K$ and $G L$ are different and intersect at the point X. Prove that X lies on the line $A O$.

Proposed by Greece

$5 \quad$ Let \mathbb{R} be the set of real numbers. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the equation

$$
f(x+f(x+y))+f(x y)=x+f(x+y)+y f(x)
$$

for all real numbers x and y.
Proposed by Dorlir Ahmeti, Albania
6 The sequence a_{1}, a_{2}, \ldots of integers satisfies the conditions:
(i) $1 \leq a_{j} \leq 2015$ for all $j \geq 1$,
(ii) $k+a_{k} \neq \ell+a_{\ell}$ for all $1 \leq k<\ell$.

Prove that there exist two positive integers b and N for which

$$
\left|\sum_{j=m+1}^{n}\left(a_{j}-b\right)\right| \leq 1007^{2}
$$

for all integers m and n such that $n>m \geq N$.
Proposed by Ivan Guo and Ross Atkins, Australia

