AoPS Community

ITAMO 1995

www.artofproblemsolving.com/community/c1059592
by parmenides51

1 Determine for which values of n it is possible to tile a square of side n with figures of the type shown in the picture

2 No two of 20 students in a class have the same scores on both written and oral examinations in mathematics. We say that student A is better than B if his two scores are greater than or equal to the corresponding scores of B. The scores are integers between 1 and 10 .
(a) Show that there exist three students A, B, C such that A is better than B and B is better than C.
(b) Would the same be true for a class of 19 students?

3 In a town there are four pubs, A, B, C, D, and any two of them are connected to each other except A and D. A drunkard wanders about the pubs starting with A and, after having a drink, goes to any of the pubs directly connected, with equal probability.
(a) What is the probability that the drunkard is at C at its fifth drink?
(b) Where is the drunkard most likely to be after n drinks $(n>5)$?

4 An acute-angled triangle $A B C$ is inscribed in a circle with center O. The bisector of $\angle A$ meets $B C$ at D, and the perpendicular to $A O$ through D meets the segment $A C$ in a point P. Show that $A B=A P$.

5 Two non-coplanar circles in space are tangent at a point and have the same tangents at this point. Show that both circles lie on some sphere.
$6 \quad$ Find all pairs of positive integers x, y such that $x^{2}+615=2^{y}$

