AoPS Community

Dutch Mathematical Olympiad 1990

www.artofproblemsolving.com/community/c1059611
by moldovan

1 Prove that for every integer $n>1,1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)<n^{n}$.
2 Consider the sequence $a_{1}=\frac{3}{2}, a_{n+1}=\frac{3 a_{n}^{2}+4 a_{n}-3}{4 a_{n}^{2}}$. (a) Prove that $1<a_{n}$ and $a_{n+1}<a_{n}$ for all n. (b) From (a) it follows that $\lim _{n \rightarrow \infty} a_{n}$ exists. Find this limit. (c) Determine $\lim _{n \rightarrow \infty} a_{1} a_{2} a_{3} \ldots a_{n}$.

3 A polynomial $f(x)=a x^{4}+b x^{3}+c x^{2}+d x$ with $a, b, c, d>0$ is such that $f(x)$ is an integer for $x \in\{-2,-1,0,1,2\}$ and $f(1)=1$ and $f(5)=70$. (a) Show that $a=\frac{1}{24}, b=\frac{1}{4}, c=\frac{11}{24}, d=\frac{1}{4}$. (b) Prove that $f(x)$ is an integer for all $x \in \mathbb{Z}$.

4 If $A B C D E F G$ is a regular 7-gon with side 1 , show that: $\frac{1}{A C}+\frac{1}{A D}=1$.

