AoPS Community

Dutch Mathematical Olympiad 1991

www.artofproblemsolving.com/community/c1059616
by moldovan

1 Prove that for any three positive real numbers $a, b, c, \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \geq \frac{9}{2} \cdot \frac{1}{a+b+c}$.
2 An angle with vertex A and measure α and a point P_{0} on one of its rays are given so that $A P_{0}=2$. Point P_{1} is chose on the other ray. The sequence of points $P_{1}, P_{2}, P_{3}, \ldots$ is defined so that P_{n} lies on the segment $A P_{n-2}$ and the triangle $P_{n} P_{n-1} P_{n-2}$ is isosceles with $P_{n} P_{n-1}=$ $P_{n} P_{n-2}$ for all $n \geq 2$. (a) Prove that for each value of α there is a unique point P_{1} for which the sequence $P_{1}, P_{2}, \ldots, P_{n}, \ldots$ does not terminate. (b) Suppose that the sequence P_{1}, P_{2}, \ldots does not terminate and that the length of the polygonal line $P_{0} P_{1} P_{2} \ldots P_{k}$ tends to 5 when $k \rightarrow \infty$. Compute the length of $P_{0} P_{1}$.
$3 \quad$ A real function f satisfies $4 f(f(x))-2 f(x)-3 x=0$ for all real numbers x. Prove that $f(0)=0$.

4 Three real numbers a, b, c satisfy the equations $a+b+c=3, a^{2}+b^{2}+c^{2}=9, a^{3}+b^{3}+c^{3}=24$. Find $a^{4}+b^{4}+c^{4}$.

5 Let H be the orthocenter, O the circumcenter, and R the circumradius of an acute-angled triangle $A B C$. Consider the circles $k_{a}, k_{b}, k_{c}, k_{h}, k$, all with radius R, centered at A, B, C, H, M, respectively. Circles k_{a} and k_{b} meet at M and $F ; k_{a}$ and k_{c} meet at M and E; and k_{b} and k_{c} meet at M and D. (a) Prove that the points D, E, F lie on the circle k_{h}. (b) Prove that the set of the points inside k_{h} that are inside exactly one of the circles k_{a}, k_{b}, k_{c} has the area twice the area of $\triangle A B C$.

