

AoPS Community

Dutch Mathematical Olympiad 1991

www.artofproblemsolving.com/community/c1059616 by moldovan

- **1** Prove that for any three positive real numbers $a, b, c, \frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a} \ge \frac{9}{2} \cdot \frac{1}{a+b+c}$.
- **2** An angle with vertex A and measure α and a point P_0 on one of its rays are given so that $AP_0 = 2$. Point P_1 is chose on the other ray. The sequence of points $P_1, P_2, P_3, ...$ is defined so that P_n lies on the segment AP_{n-2} and the triangle $P_nP_{n-1}P_{n-2}$ is isosceles with $P_nP_{n-1} = P_nP_{n-2}$ for all $n \ge 2$. (a) Prove that for each value of α there is a unique point P_1 for which the sequence $P_1, P_2, ..., P_n, ...$ does not terminate. (b) Suppose that the sequence $P_1, P_2, ..., P_n$, ... does not terminate $P_0P_1P_2...P_k$ tends to 5 when $k \to \infty$. Compute the length of P_0P_1 .
- **3** A real function f satisfies 4f(f(x)) 2f(x) 3x = 0 for all real numbers x. Prove that f(0) = 0.
- 4 Three real numbers a, b, c satisfy the equations a + b + c = 3, $a^2 + b^2 + c^2 = 9$, $a^3 + b^3 + c^3 = 24$. Find $a^4 + b^4 + c^4$.
- **5** Let *H* be the orthocenter, *O* the circumcenter, and *R* the circumradius of an acute-angled triangle *ABC*. Consider the circles k_a, k_b, k_c, k_h, k_r all with radius *R*, centered at *A*, *B*, *C*, *H*, *M*, respectively. Circles k_a and k_b meet at *M* and *F*; k_a and k_c meet at *M* and *E*; and k_b and k_c meet at *M* and *D*. (*a*) Prove that the points *D*, *E*, *F* lie on the circles k_a, k_b, k_c has the area twice the area of $\triangle ABC$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱