Art of Problem Solving

AoPS Community

1990 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 21990

www.artofproblemsolving.com/community/c1060502
by parmenides51, moldovan

- Day 1

1 Determine the number of integers n with $1 \leq n \leq N=1990^{1990}$ such that $n^{2}-1$ and N are coprime.

2 Show that for all integers $n \geq 2, \sqrt{2 \sqrt[3]{3 \sqrt[4]{4 \ldots \sqrt[n]{n}}}}<2$
3 In a convex quadrilateral $A B C D$, let E be the intersection point of the diagonals, and let F_{1}, F_{2}, and F be the areas of $A B E, C D E$, and $A B C D$, respectively. Prove that:
$\sqrt{F_{1}}+\sqrt{F_{2}} \leq \sqrt{F}$.

- Day 2

4 For each nonzero integer n find all functions $f: \mathbb{R}-\{-3,0\} \rightarrow \mathbb{R}$ satisfying:
$f(x+3)+f\left(-\frac{9}{x}\right)=\frac{(1-n)\left(x^{2}+3 x-9\right)}{9 n(x+3)}+\frac{2}{n}$ for all $x \neq 0,-3$.
Furthermore, for each fixed n find all integers x for which $f(x)$ is an integer.
5 Determine all rational numbers r such that all solutions of the equation:
$r x^{2}+(r+1) x+(r-1)=0$ are integers.
6 A convex pentagon $A B C D E$ is inscribed in a circle. The distances of A from the lines $B C, C D, D E$ are a, b, c, respectively. Compute the distance of A from the line $B E$.

