Art of Problem Solving

AoPS Community

1989 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 21989

www.artofproblemsolving.com/community/c1060503
by parmenides51, moldovan

- Day 1

1 Consider the set S_{n} of all the 2^{n} numbers of the type $2 \pm \sqrt{2 \pm \sqrt{2 \pm \ldots}}$, where number 2 appears $n+1$ times. (a) Show that all members of S_{n} are real. (b) Find the product P_{n} of the elements of S_{n}.

2 Find all triples (a, b, c) of integers with $a b c=1989$ and $a+b-c=89$.
3 Show that it is possible to situate eight parallel planes at equal distances such that each plane contains precisely one vertex of a given cube. How many such configurations of planes are there?

- Day 2

4 We are given a circle k and nonparallel tangents t_{1}, t_{2} at points P_{1}, P_{2} on k, respectively. Lines t_{1} and t_{2} meet at A_{0}. For a point A_{3} on the smaller arc $P_{1} P_{2}$, the tangent t_{3} to k at P_{3} meets t_{1} at A_{1} and t_{2} at A_{2}. How must P_{3} be chosen so that the triangle $A_{0} A_{1} A_{2}$ has maximum area?

5 Find all real solutions of the system:

$x^{2}+2 y z=x, y^{2}+2 z x=y, z^{2}+2 x y=z$.
$6 \quad$ Determine all functions $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ such that $f(f(n))+f(n)=2 n+6$ for all $n \in \mathbb{N}_{0}$.

