Art of Problem Solving

AoPS Community

Federal Competition For Advanced Students, Part 21988

www.artofproblemsolving.com/community/c1060508
by parmenides51, moldovan

- Day 1

1 If a_{1}, \ldots, a_{1988} are positive numbers whose arithmetic mean is 1988 , show that:
$\sqrt[1988]{\prod_{i, j=1}^{1988}\left(1+\frac{a_{i}}{a_{j}}\right)} \geq 2^{1988}$
and determine when equality holds.
2 An equilateral triangle $A_{1} A_{2} A_{3}$ is divided into four smaller equilateral triangles by joining the midpoints A_{4}, A_{5}, A_{6} of its sides. Let A_{7}, \ldots, A_{15} be the midpoints of the sides of these smaller triangles. The 15 points A_{1}, \ldots, A_{15} are colored either green or blue. Show that with any such colouring there are always three mutually equidistant points A_{i}, A_{j}, A_{k} having the same color.

3 Show that there is precisely one sequence a_{1}, a_{2}, \ldots of integers which satisfies $a_{1}=1, a_{2}>1$, and $a_{n+1}^{3}+1=a_{n} a_{n+2}$ for $n \geq 1$.

- Day 2

$4 \quad$ Let $a_{i j}$ be nonnegative integers such that $a_{i j}=0$ if and only if $i>j$ and that $\sum_{j=1}^{1988} a_{i j}=1988$ holds for all $i=1, \ldots, 1988$. Find all real solutions of the system of equations:
$\sum_{j=1}^{1988}\left(1+a_{i j}\right) x_{j}=i+1,1 \leq i \leq 1988$.
$5 \quad$ The bisectors of angles B and C of triangle $A B C$ intersect the opposite sides in points B^{\prime} and C^{\prime} respectively. Show that the line $B^{\prime} C^{\prime}$ intersects the incircle of the triangle.

6 Determine all monic polynomials $p(x)$ of fifth degree having real coefficients and the following property: Whenever a is a (real or complex) root of $p(x)$, then so are $\frac{1}{a}$ and $1-a$.

