

AoPS Community

1987 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 2 1987

www.artofproblemsolving.com/community/c1060509 by parmenides51, moldovan

- Day 1
- 1 The sides a, b and the bisector of the included angle γ of a triangle are given. Determine necessary and sufficient conditions for such triangles to be constructible and show how to reconstruct the triangle.
- **2** Find the number of all sequences $(x_1, ..., x_n)$ of letters a, b, c that satisfy $x_1 = x_n = a$ and $x_i \neq x_{i+1}$ for $1 \le i \le n-1$.

3 Let
$$x_1, ..., x_n$$
 be positive real numbers. Prove that:

$$\sum_{k=1}^n x_k + \sqrt{\sum_{k=1}^n x_k^2} \le \frac{n + \sqrt{n}}{n^2} \left(\sum_{k=1}^n \frac{1}{x_k}\right) \left(\sum_{k=1}^n x_k^2\right).$$

- Day 2
- **4** Find all triples (x, y, z) of natural numbers satisfying $2xz = y^2$ and x + z = 1987.
- **5** Let *P* be a point in the interior of a convex *n*-gon $A_1A_2...A_n$ $(n \ge 3)$. Show that among the angles $\beta_{ij} = \angle A_i P A_j$, $1 \le i \le n$, there are at least n 1 angles satisfying $90^\circ \le \beta_{ij} \le 180^\circ$.
- **6** Determine all polynomials $P_n(x) = x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$ with integer coefficients whose n zeros are precisely the numbers $a_1, ..., a_n$ (counted with their respective multiplicities).

Art of Problem Solving is an ACS WASC Accredited School.