AoPS Community
 1986 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 21986

www.artofproblemsolving.com/community/c1060514
by parmenides51, moldovan

- Day 1

1 Show that a square can be inscribed in any regular polygon.
2 For $s, t \in \mathbb{N}$, consider the set $M=\left\{(x, y) \in \mathbb{N}^{2} \mid 1 \leq x \leq s, 1 \leq y \leq t\right\}$. Find the number of rhombi with the vertices in M and the diagonals parallel to the coordinate axes.

3 Find all possible values of x_{0} and x_{1} such that the sequence defined by: $x_{n+1}=\frac{x_{n-1} x_{n}}{3 x_{n-1}-2 x_{n}}$ for $n \geq 1$
contains infinitely many natural numbers.

- Day 2

4 Find the largest n for which there is a natural number N with n decimal digits which are all different such that n ! divides N. Furthermore, for this largest n find all possible numbers N.

5 Show that for every convex n-gon $(n \geq 4)$, the arithmetic mean of the lengths of its sides is less than the arithmetic mean of the lengths of all its diagonals.
$6 \quad$ Given a positive integer n, find all functions $F: \mathbb{N} \rightarrow \mathbb{R}$ such that $F(x+y)=F(x y-n)$ whenever $x, y \in \mathbb{N}$ satisfy $x y>n$.

