

AoPS Community

1986 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 2 1986

www.artofproblemsolving.com/community/c1060514 by parmenides51, moldovan

-	Day 1
1	Show that a square can be inscribed in any regular polygon.
2	For $s, t \in \mathbb{N}$, consider the set $M = \{(x, y) \in \mathbb{N}^2 1 \le x \le s, 1 \le y \le t\}$. Find the number of rhombi with the vertices in M and the diagonals parallel to the coordinate axes.
3	Find all possible values of x_0 and x_1 such that the sequence defined by: $x_{n+1} = \frac{x_{n-1}x_n}{3x_{n-1}-2x_n}$ for $n \ge 1$
	contains infinitely many natural numbers.
-	Day 2
4	Find the largest n for which there is a natural number N with n decimal digits which are all different such that $n!$ divides N . Furthermore, for this largest n find all possible numbers N .
5	Show that for every convex <i>n</i> -gon $(n \ge 4)$, the arithmetic mean of the lengths of its sides is less than the arithmetic mean of the lengths of all its diagonals.
6	Given a positive integer n , find all functions $F : \mathbb{N} \to \mathbb{R}$ such that $F(x + y) = F(xy - n)$ whenever $x, y \in \mathbb{N}$ satisfy $xy > n$.

AOPSOnline AOPSAcademy AOPS