Art of Problem Solving

AoPS Community

1985 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 21985

www.artofproblemsolving.com/community/c1060519
by parmenides51, moldovan

- Day 1

1 Determine all quadruples (a, b, c, d) of nonnegative integers satisfying: $a^{2}+b^{2}+c^{2}+d^{2}=a^{2} b^{2} c^{2}$.

2 For $n \in \mathbb{N}$, let $f(n)=1^{n}+2^{n-1}+3^{n-2}+\ldots+n^{1}$. Determine the minimum value of: $\frac{f(n+1)}{f(n)}$.
3 A line meets the lines containing sides $B C, C A, A B$ of a triangle $A B C$ at A_{1}, B_{1}, C_{1}, respectively. Points A_{2}, B_{2}, C_{2} are symmetric to A_{1}, B_{1}, C_{1} with respect to the midpoints of $B C, C A, A B$, respectively. Prove that A_{2}, B_{2}, and C_{2} are collinear.

- Day 2

4 Find all natural numbers n such that the equation:
$a_{n+1} x^{2}-2 x \sqrt{a_{1}^{2}+a_{2}^{2}+\ldots+a_{n+1}^{2}}+a_{1}+a_{2}+\ldots+a_{n}=0$
has real solutions for all real numbers $a_{1}, a_{2}, \ldots, a_{n+1}$.
$5 \quad$ A sequence $\left(a_{n}\right)$ of positive integers satisfies: $a_{n}=\sqrt{\frac{a_{n-1}^{2}+a_{n+1}^{2}}{2}}$ for all $n \geq 1$. Prove that this sequence is constant.
$6 \quad$ Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying: $x^{2} f(x)+f(1-x)=2 x-x^{4}$ for all $x \in \mathbb{R}$.

