

AoPS Community

1985 Federal Competition For Advanced Students, P2

Federal Competition For Adv	vanced Students, Part 2 1985
-----------------------------	------------------------------

www.artofproblemsolving.com/community/c1060519 by parmenides51, moldovan

-	Day 1
1	Determine all quadruples (a, b, c, d) of nonnegative integers satisfying: $a^2 + b^2 + c^2 + d^2 = a^2b^2c^2$.
2	For $n \in \mathbb{N}$, let $f(n) = 1^n + 2^{n-1} + 3^{n-2} + \ldots + n^1$. Determine the minimum value of: $\frac{f(n+1)}{f(n)}$.
3	A line meets the lines containing sides BC, CA, AB of a triangle ABC at A_1, B_1, C_1 , respectively. Points A_2, B_2, C_2 are symmetric to A_1, B_1, C_1 with respect to the midpoints of BC, CA, AB , respectively. Prove that A_2, B_2 , and C_2 are collinear.
-	Day 2
4	Find all natural numbers n such that the equation: $a_{n+1}x^2 - 2x\sqrt{a_1^2 + a_2^2 + + a_{n+1}^2} + a_1 + a_2 + + a_n = 0$ has real solutions for all real numbers $a_1, a_2,, a_{n+1}$.
5	A sequence (a_n) of positive integers satisfies: $a_n = \sqrt{\frac{a_{n-1}^2 + a_{n+1}^2}{2}}$ for all $n \ge 1$. Prove that this sequence is constant.
6	Find all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying: $x^2 f(x) + f(1-x) = 2x - x^4$ for all $x \in \mathbb{R}$.

Act of Problem Solving is an ACS WASC Accredited School.