Art of Problem Solving

AoPS Community

1983 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 21983

www.artofproblemsolving.com/community/c1060520
by parmenides51, moldovan

- Day 1

1 For every natural number x, let $Q(x)$ be the sum and $P(x)$ the product of the (decimal) digits of x. Show that for each $n \in \mathbb{N}$ there exist infinitely many values of x such that:
$Q(Q(x))+P(Q(x))+Q(P(x))+P(P(x))=n$.
2 Let x_{1}, x_{2}, x_{3} be the roots of: $x^{3}-6 x^{2}+a x+a=0$. Find all real numbers a for which $\left(x_{1}-1\right)^{3}+$ $\left(x_{2}-1\right)^{3}+\left(x_{3}-1\right)^{3}=0$. Also, for each such a, determine the corresponding values of x_{1}, x_{2}, and x_{3}.

3 Let P be a point in the plane of a triangle $A B C$. Lines $A P, B P, C P$ respectively meet lines $B C, C A, A B$ at points $A^{\prime}, B^{\prime}, C^{\prime}$. Points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ are symmetric to A, B, C with respect to $A^{\prime}, B^{\prime}, C^{\prime}$, respectively. Show that: $S_{A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}}=3 S_{A B C}+4 S_{A^{\prime} B^{\prime} C^{\prime}}$.

- Day 2

4 The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is defined by $x_{1}=2, x_{2}=3$, and
$x_{2 m+1}=x_{2 m}+x_{2 m-1}$ for $m \geq 1 ; x_{2 m}=x_{2 m-1}+2 x_{2 m-2}$ for $m \geq 2$.
Determine x_{n} as a function of n.
5 Given positive integers a, b, find all positive integers x, y satisfying the equation: $x^{a+b}+y=$ $x^{a} y^{b}$.
$6 \quad$ Planes π_{1} and π_{2} in Euclidean space \mathbb{R}^{3} partition $S=\mathbb{R}^{3} \backslash\left(\pi_{1} \cup \pi_{2}\right)$ into several components. Show that for any cube in \mathbb{R}^{3}, at least one of the components of S meets at least three faces of the cube.

