

AoPS Community

1983 Federal Competition For Advanced Students, P2

Federal Competition For Advanced Students, Part 2 1983

www.artofproblemsolving.com/community/c1060520 by parmenides51, moldovan

- Day 1 _ 1 For every natural number x, let Q(x) be the sum and P(x) the product of the (decimal) digits of x. Show that for each $n \in \mathbb{N}$ there exist infinitely many values of x such that: Q(Q(x)) + P(Q(x)) + Q(P(x)) + P(P(x)) = n.Let x_1, x_2, x_3 be the roots of: $x^3 - 6x^2 + ax + a = 0$. Find all real numbers a for which $(x_1 - 1)^3 + ax + a = 0$. 2 $(x_2-1)^3 + (x_3-1)^3 = 0$. Also, for each such a, determine the corresponding values of x_1, x_2 , and x_3 . Let P be a point in the plane of a triangle ABC. Lines AP, BP, CP respectively meet lines 3 BC, CA, AB at points A', B', C'. Points A'', B'', C'' are symmetric to A, B, C with respect to A', B', C', respectively. Show that: $S_{A''B''C''} = 3S_{ABC} + 4S_{A'B'C'}$. Day 2 The sequence $(x_n)_{n \in \mathbb{N}}$ is defined by $x_1 = 2, x_2 = 3$, and 4 $x_{2m+1} = x_{2m} + x_{2m-1}$ for $m \ge 1$; $x_{2m} = x_{2m-1} + 2x_{2m-2}$ for $m \ge 2$. Determine x_n as a function of n. Given positive integers a, b, find all positive integers x, y satisfying the equation: $x^{a+b} + y =$ 5 $x^a y^b$.
- **6** Planes π_1 and π_2 in Euclidean space \mathbb{R}^3 partition $S = \mathbb{R}^3 \setminus (\pi_1 \cup \pi_2)$ into several components. Show that for any cube in \mathbb{R}^3 , at least one of the components of *S* meets at least three faces of the cube.

AoPS Online 🔯 AoPS Academy 🐲 AoPS 🗱