AoPS Community

1991 Federal Competition For Advanced Students

Federal Competition For Advanced Students, Part 11991

www.artofproblemsolving.com/community/c1060525
by moldovan
$1 \quad$ Suppose that a, b, and $\sqrt[3]{a}+\sqrt[3]{b}$ are rational numbers. Prove that $\sqrt[3]{a}$ and $\sqrt[3]{b}$ are also rational.
2 Solve in real numbers the equation:
$\frac{1}{x}+\frac{1}{x+2}-\frac{1}{x+4}-\frac{1}{x+6}-\frac{1}{x+8}-\frac{1}{x+10}+\frac{1}{x+12}+\frac{1}{x+14}=0$.
3 Find the number of squares in the sequence given by $a_{0}=91$ and $a_{n+1}=10 a_{n}+(-1)^{n}$ for $n \geq 0$.

4 Let $A B$ be a chord of a circle k of radius r, with $A B=c$. (a) Construct the triangle $A B C$ with C on k in which a median from A or B is of a given length d. (b) For which c and d is this triangle unique?

