AoPS Community

Dutch Mathematical Olympiad 1996

www.artofproblemsolving.com/community/c1060565
by parmenides51

1 How many different (non similar) triangles are there whose angles have an integer number of degrees?

2 Investigate whether for two positive integers m and n the numbers $m^{2}+n$ and $n^{2}+m$ can be both squares of integers.

3 What is the largest number of horses that you can put on a chessboard without there being two horses that can beat each other?
a. Describe an arrangement with that maximum number.
b. Prove that a larger number is not possible.
(A chessboard consists of 8×8 spaces and a horse jumps from one field to another field according to the line "two squares vertically and one squared horizontally" or "one square vertically and two squares horizontally")

$4 \quad$ A line l intersects the segment $A B$ perpendicular to C. Three circles are drawn successively with $A B, A C$ and $B C$ as the diameter. The largest circle intersects l in D. The segments $D A$ and $D B$ still intersect the two smaller circles in E and F.
a. Prove that quadrilateral $C F D E$ is a rectangle.
b. Prove that the line through E and F touches the circles with diameters $A C$ and $B C$ in E and F.

$5 \quad$ For the positive integers x, y and z apply $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$.
Prove that if the three numbers x, y, and z have no common divisor greater than $1, x+y$ is the square of an integer.

