AoPS Community

Olympic Revenge 2020

www.artofproblemsolving.com/community/c1063075
by ZeusDM

1 Let n be a positive integer and $a_{1}, a_{2}, \ldots, a_{n}$ non-zero real numbers. What is the least number of non-zero coefficients that the polynomial $P(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)$ can have?

2 For a positive integer n, we say an n-shuffling is a bijection $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ such that there exist exactly two elements i of $\{1,2, \ldots, n\}$ such that $\sigma(i) \neq i$.

Fix some three pairwise distinct n-shufflings $\sigma_{1}, \sigma_{2}, \sigma_{3}$. Let q be any prime, and let \mathbb{F}_{q} be the integers modulo q. Consider all functions $f:\left(\mathbb{F}_{q}^{n}\right)^{n} \rightarrow \mathbb{F}_{q}$ that satisfy, for all integers i with $1 \leq i \leq n$ and all $x_{1}, \ldots x_{i-1}, x_{i+1}, \ldots, x_{n}, y, z \in \mathbb{F}_{q}^{n}$,
$f\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, x_{i-1}, y+z, x_{i+1}, \ldots, x_{n}\right)$,
and that satisfy, for all $x_{1}, \ldots, x_{n} \in \mathbb{F}_{q}^{n}$ and all $\sigma \in\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$,

$$
f\left(x_{1}, \ldots, x_{n}\right)=-f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
$$

For a given tuple $\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{F}_{q}^{n}\right)^{n}$, let $g\left(x_{1}, \ldots, x_{n}\right)$ be the number of different values of $f\left(x_{1}, \ldots, x_{n}\right)$ over all possible functions f satisfying the above conditions.

Pick $\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{F}_{q}^{n}\right)^{n}$ uniformly at random, and let $\varepsilon\left(q, \sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ be the expected value of $g\left(x_{1}, \ldots, x_{n}\right)$. Finally, let

$$
\kappa\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)=-\lim _{q \rightarrow \infty} \log _{q}\left(-\ln \left(\frac{\varepsilon\left(q, \sigma_{1}, \sigma_{2}, \sigma_{3}\right)-1}{q-1}\right)\right) .
$$

Pick three pairwise distinct n-shufflings $\sigma_{1}, \sigma_{2}, \sigma_{3}$ uniformly at random from the set of all n shufflings. Let $\pi(n)$ denote the expected value of $\kappa\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$. Suppose that $p(x)$ and $q(x)$ are polynomials with real coefficients such that $q(-3) \neq 0$ and such that $\pi(n)=\frac{p(n)}{q(n)}$ for infinitely many positive integers n. Compute $\frac{p(-3)}{q(-3)}$.
$3 \quad$ Let $A B C$ be a triangle and ω its circumcircle. Let D and E be the feet of the angle bisectors relative to B and C, respectively. The line $D E$ meets ω at F and G. Prove that the tangents to ω through F and G are tangents to the excircle of $\triangle A B C$ opposite to A.

4 Let n be a positive integer and A a set of integers such that the set $\{x=a+b \mid a, b \in A\}$ contains $\left\{1^{2}, 2^{2}, \ldots, n^{2}\right\}$. Prove that there is a positive integer N such that if $n \geq N$, then $|A|>n^{0.666}$.
$5 \quad$ Let n be a positive integer. Given n points in the plane, prove that it is possible to draw an angle with measure $\frac{2 \pi}{n}$ with vertex as each one of the given points, such that any point in the plane is covered by at least one of the angles.

