## AoPS Community

ITAMO 1987
www.artofproblemsolving.com/community/c1063513
by parmenides51

1 Show that $3 x^{5}+5 x^{3}-8 x$ is divisible by 120 for any integer $x$
2 A tetrahedron has the property that the three segments connecting the pairs of midpoints of opposite edges are equal and mutually orthogonal. Prove that this tetrahedron is regular.

3 Show how to construct (by a ruler and a compass) a right-angled triangle, given its inradius and circumradius.

4 Given $I_{0}=\{-1,1\}$, define $I_{n}$ recurrently as the set of solutions $x$ of the equations $x^{2}-2 x y+$ $y^{2}-4^{n}=0$,
where $y$ ranges over all elements of $I_{n-1}$. Determine the union of the sets $I_{n}$ over all nonnegative integers $n$.

5 Let $a_{1}, a_{2}, \ldots$ and $b_{1}, b_{2}, \ldots$ be two arbitrary infinite sequences of natural numbers. Prove that there exist different indices $r$ and $s$ such that $a_{r} \geq a_{s}$ and $b_{r} \geq b_{s}$.

6 There are three balls of distinct colors in a bag. We repeatedly draw out the balls one by one, the balls are put back into the bag after each drawing. What is the probability that, after $n$ drawings,
(a) exactly one color occured?
(b) exactly two oclors occured?
(c) all three colors occured?

7 A square paper of side $n$ is divided into $n^{2}$ unit square cells. A maze is drawn on the paper with unit walls between some cells in such a way that one can reach every cell from every other cell not crossing any wall. Find, in terms of $n$, the largest possible total length of the walls.

