AoPS Community

ITAMO 1988

www.artofproblemsolving.com/community/c1063514
by parmenides51
$1 \quad$ Players A and B play the following game: A tosses a coin n times, and B does $n+1$ times. The player who obtains more heads wins; or in the case of equal balances, A is assigned victory. Find the values of n for which this game is fair (i.e. both players have equal chances for victory).

2 In a basketball tournament any two of the n teams $S_{1}, S_{2}, \ldots, S_{n}$ play one match (no draws). Denote by v_{i} and p_{i} the number of victories and defeats of team $S_{i}(i=1,2, \ldots, n)$, respectively. Prove that $v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}=p_{1}^{2}+p_{2}^{2}+\ldots+p_{n}^{2}$

3 A regular pentagon of side length 1 is given. Determine the smallest r for which the pentagon can be covered by five discs of radius r and justify your answer.

4 Show that all terms of the sequence $1,11,111,1111, \ldots$ in base 9 are triangular numbers, i.e. of the form $\frac{m(m+1)}{2}$ for an integer m

5 Given four non-coplanar points, is it always possible to find a plane such that the orthogonal projections of the points onto the plane are the vertices of a parallelogram? How many such planes are there in general?

6 The edge lengths of the base of a tetrahedron are a, b, c, and the lateral edge lengths are x, y, z. If d is the distance from the top vertex to the centroid of the base, prove that $x+y+z \leq$ $a+b+c+3 d$.

7 Given $n \geq 3$ positive integers not exceeding 100, let d be their greatest common divisor. Show that there exist three of these numbers whose greatest common divisor is also equal to d.

