

AoPS Community

ITAMO 1988

www.artofproblemsolving.com/community/c1063514 by parmenides51

- 1 Players A and B play the following game: A tosses a coin n times, and B does n + 1 times. The player who obtains more heads wins; or in the case of equal balances, A is assigned victory. Find the values of n for which this game is fair (i.e. both players have equal chances for victory).
- 2 In a basketball tournament any two of the *n* teams $S_1, S_2, ..., S_n$ play one match (no draws). Denote by v_i and p_i the number of victories and defeats of team S_i (i = 1, 2, ..., n), respectively. Prove that $v_1^2 + v_2^2 + ... + v_n^2 = p_1^2 + p_2^2 + ... + p_n^2$
- **3** A regular pentagon of side length 1 is given. Determine the smallest *r* for which the pentagon can be covered by five discs of radius *r* and justify your answer.
- **4** Show that all terms of the sequence 1, 11, 111, 1111, ... in base 9 are triangular numbers, i.e. of the form $\frac{m(m+1)}{2}$ for an integer m
- **5** Given four non-coplanar points, is it always possible to find a plane such that the orthogonal projections of the points onto the plane are the vertices of a parallelogram? How many such planes are there in general?
- **6** The edge lengths of the base of a tetrahedron are a, b, c, and the lateral edge lengths are x, y, z. If d is the distance from the top vertex to the centroid of the base, prove that $x + y + z \le a + b + c + 3d$.
- **7** Given $n \ge 3$ positive integers not exceeding 100, let *d* be their greatest common divisor. Show that there exist three of these numbers whose greatest common divisor is also equal to *d*.

Art of Problem Solving is an ACS WASC Accredited School.