AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 2017

www.artofproblemsolving.com/community/c1063945
by parmenides51

1 There are 100 diamonds on the pile, 50 of which are genuine and 50 false. We invited a peculiar expert who alone can recognize which are which. Every time we show him some three diamonds, he would pick two and tell (truthfully) how many of them are genuine. Decide whether we can surely detect all genuine diamonds regardless how the expert chooses the pairs to be considered.

2 Find all pairs of real numbers k, l such that inequality $k a^{2}+l b^{2}>c^{2}$ applies to the lengths of sides a, b, c of any triangle.
$3 \quad$ Find all functions $f: R \rightarrow R$ such that for all real numbers x, y holds $f(y-x y)=f(x) y+(x-$ $1)^{2} f(y)$

4 For each sequence of n zeros and n units, we assign a number that is a number sections of the same digits in it. (For example, sequence 00111001 has 4 such sections $00,111,00,1$.) For a given n we sum up all the numbers assigned to each such sequence. Prove that the sum total is equal to $(n+1)\binom{2 n}{n}$

5 Given is the acute triangle $A B C$ with the intersection of altitudes H. The angle bisector of angle $B H C$ intersects side $B C$ at point D. Mark E and F the symmetrics of the point D wrt lines $A B$ and $A C$. Prove that the circle circumscribed around the triangle $A E F$ passes through the midpoint of the arc $B A C$

6 Given is a nonzero integer k.
Prove that equation $k=\frac{x^{2}-x y+2 y^{2}}{x+y}$ has an odd number of ordered integer pairs (x, y) just when k is divisible by seven.

