AoPS Community

2014 Federal Competition For Advanced Students

Federal Competition For Advanced Students 2014

www.artofproblemsolving.com/community/c1063958
by parmenides51

1 Determine all real numbers x and y such that $x^{2}+x=y^{3}-y, y^{2}+y=x^{3}-x$
2 We call a set of squares with sides parallel to the coordinate axes and vertices with integer coordinates friendly if any two of them have exactly two points in common. We consider friendly sets in which each of the squares has sides of length n. Determine the largest possible number of squares in such a friendly set.

3 Let a_{n} be a sequence de fined by some a_{0} and the recursion $a_{n+1}=a_{n}+2 \cdot 3^{n}$ for $n \geq 0$. Determine all rational values of a_{0} such that a_{k}^{j} / a_{j}^{k} is an integer for all integers j and k with $0<j<k$.

4 We are given a right-angled triangle $M N P$ with right angle in P. Let k_{M} be the circle with center M and radius $M P$, and let k_{N} be the circle with center N and radius $N P$. Let A and B be the common points of k_{M} and the line $M N$, and let C and D be the common points of k_{N} and the line $M N$ with with C between A and B. Prove that the line $P C$ bisects the angle $\angle A P B$.

