AoPS Community

IMO Shortlist 2014

www.artofproblemsolving.com/community/c107000
by Sayan, Amir Hossein, hajimbrak, v_Enhance, IMO2018, ipaper, codyj

- Algebra

A1 Let $a_{0}<a_{1}<a_{2}<\ldots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n \geq 1$ such that

$$
a_{n}<\frac{a_{0}+a_{1}+a_{2}+\cdots+a_{n}}{n} \leq a_{n+1} .
$$

Proposed by Gerhard Wöginger, Austria.
A2 Define the function $f:(0,1) \rightarrow(0,1)$ by

$$
f(x)= \begin{cases}x+\frac{1}{2} & \text { if } x<\frac{1}{2} \\ x^{2} & \text { if } x \geq \frac{1}{2}\end{cases}
$$

Let a and b be two real numbers such that $0<a<b<1$. We define the sequences a_{n} and b_{n} by $a_{0}=a, b_{0}=b$, and $a_{n}=f\left(a_{n-1}\right), b_{n}=f\left(b_{n-1}\right)$ for $n>0$. Show that there exists a positive integer n such that

$$
\left(a_{n}-a_{n-1}\right)\left(b_{n}-b_{n-1}\right)<0 .
$$

Proposed by Denmark
A3 For a sequence $x_{1}, x_{2}, \ldots, x_{n}$ of real numbers, we define its price as

$$
\max _{1 \leq i \leq n}\left|x_{1}+\cdots+x_{i}\right| .
$$

Given n real numbers, Dave and George want to arrange them into a sequence with a low price. Diligent Dave checks all possible ways and finds the minimum possible price D. Greedy George, on the other hand, chooses x_{1} such that $\left|x_{1}\right|$ is as small as possible; among the remaining numbers, he chooses x_{2} such that $\left|x_{1}+x_{2}\right|$ is as small as possible, and so on. Thus, in the i-th step he chooses x_{i} among the remaining numbers so as to minimise the value of $\left|x_{1}+x_{2}+\cdots x_{i}\right|$. In each step, if several numbers provide the same value, George chooses one at random. Finally he gets a sequence with price G.

Find the least possible constant c such that for every positive integer n, for every collection of n real numbers, and for every possible sequence that George might obtain, the resulting values satisfy the inequality $G \leq c D$.

Proposed by Georgia

A4 Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying

$$
f(f(m)+n)+f(m)=f(n)+f(3 m)+2014
$$

for all integers m and n.
Proposed by Netherlands
A5 Consider all polynomials $P(x)$ with real coefficients that have the following property: for any two real numbers x and y one has

$$
\left|y^{2}-P(x)\right| \leq 2|x| \quad \text { if and only if } \quad\left|x^{2}-P(y)\right| \leq 2|y| .
$$

Determine all possible values of $P(0)$.
Proposed by Belgium
A6 Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
n^{2}+4 f(n)=f(f(n))^{2}
$$

for all $n \in \mathbb{Z}$.
Proposed by Sahl Khan, UK

- Combinatorics

C1 Let n points be given inside a rectangle R such that no two of them lie on a line parallel to one of the sides of R. The rectangle R is to be dissected into smaller rectangles with sides parallel to the sides of R in such a way that none of these rectangles contains any of the given points in its interior. Prove that we have to dissect R into at least $n+1$ smaller rectangles.

Proposed by Serbia

C2 We have 2^{m} sheets of paper, with the number 1 written on each of them. We perform the following operation. In every step we choose two distinct sheets; if the numbers on the two sheets are a and b, then we erase these numbers and write the number $a+b$ on both sheets. Prove that after $m 2^{m-1}$ steps, the sum of the numbers on all the sheets is at least 4^{m}.

Proposed by Abbas Mehrabian, Iran
C3 Let $n \geq 2$ be an integer. Consider an $n \times n$ chessboard consisting of n^{2} unit squares. A configuration of n rooks on this board is peaceful if every row and every column contains exactly one rook. Find the greatest positive integer k such that, for each peaceful configuration of n rooks, there is a $k \times k$ square which does not contain a rook on any of its k^{2} unit squares.

C4 Construct a tetromino by attaching two 2×1 dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them S - and Z tetrominoes, respectively.
Assume that a lattice polygon P can be tiled with S-tetrominoes. Prove that no matter how we tile P using only S - and Z-tetrominoes, we always use an even number of Z-tetrominoes.
Proposed by Tamas Fleiner and Peter Pal Pach, Hungary
C5 A set of lines in the plane is in general position if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite area; we call these its finite regions. Prove that for all sufficiently large n, in any set of n lines in general position it is possible to colour at least \sqrt{n} lines blue in such a way that none of its finite regions has a completely blue boundary.
Note: Results with \sqrt{n} replaced by $c \sqrt{n}$ will be awarded points depending on the value of the constant c.

C6 We are given an infinite deck of cards, each with a real number on it. For every real number x, there is exactly one card in the deck that has x written on it. Now two players draw disjoint sets A and B of 100 cards each from this deck. We would like to define a rule that declares one of them a winner. This rule should satisfy the following conditions:

1. The winner only depends on the relative order of the 200 cards: if the cards are laid down in increasing order face down and we are told which card belongs to which player, but not what numbers are written on them, we can still decide the winner.
2. If we write the elements of both sets in increasing order as $A=\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$ and $B=$ $\left\{b_{1}, b_{2}, \ldots, b_{100}\right\}$, and $a_{i}>b_{i}$ for all i, then A beats B.
3. If three players draw three disjoint sets A, B, C from the deck, A beats B and B beats C then A also beats C.
How many ways are there to define such a rule? Here, we consider two rules as different if there exist two sets A and B such that A beats B according to one rule, but B beats A according to the other.

Proposed by llya Bogdanov, Russia
C7 Let M be a set of $n \geq 4$ points in the plane, no three of which are collinear. Initially these points are connected with n segments so that each point in M is the endpoint of exactly two segments. Then, at each step, one may choose two segments $A B$ and $C D$ sharing a common interior point and replace them by the segments $A C$ and $B D$ if none of them is present at this moment. Prove that it is impossible to perform $n^{3} / 4$ or more such moves.
Proposed by Vladislav Volkov, Russia
C8 A card deck consists of 1024 cards. On each card, a set of distinct decimal digits is written in such a way that no two of these sets coincide (thus, one of the cards is empty). Two players
alternately take cards from the deck, one card per turn. After the deck is empty, each player checks if he can throw out one of his cards so that each of the ten digits occurs on an even number of his remaining cards. If one player can do this but the other one cannot, the one who can is the winner; otherwise a draw is declared.
Determine all possible first moves of the first player after which he has a winning strategy.
Proposed by Ilya Bogdanov \& Vladimir Bragin, Russia
C9 There are n circles drawn on a piece of paper in such a way that any two circles intersect in two points, and no three circles pass through the same point. Turbo the snail slides along the circles in the following fashion. Initially he moves on one of the circles in clockwise direction. Turbo always keeps sliding along the current circle until he reaches an intersection with another circle. Then he continues his journey on this new circle and also changes the direction of moving, i.e. from clockwise to anticlockwise or vice versa.
Suppose that Turbo's path entirely covers all circles. Prove that n must be odd.
Proposed by Tejaswi Navilarekallu, India

- Geometry

G1 Let P and Q be on segment $B C$ of an acute triangle $A B C$ such that $\angle P A B=\angle B C A$ and $\angle C A Q=\angle A B C$. Let M and N be the points on $A P$ and $A Q$, respectively, such that P is the midpoint of $A M$ and Q is the midpoint of $A N$. Prove that the intersection of $B M$ and $C N$ is on the circumference of triangle $A B C$.

Proposed by Giorgi Arabidze, Georgia.
G2 Let $A B C$ be a triangle. The points K, L, and M lie on the segments $B C, C A$, and $A B$, respectively, such that the lines $A K, B L$, and $C M$ intersect in a common point. Prove that it is possible to choose two of the triangles $A L M, B M K$, and $C K L$ whose inradii sum up to at least the inradius of the triangle $A B C$.

Proposed by Estonia
G3 Let Ω and O be the circumcircle and the circumcentre of an acute-angled triangle $A B C$ with $A B>B C$. The angle bisector of $\angle A B C$ intersects Ω at $M \neq B$. Let Γ be the circle with diameter $B M$. The angle bisectors of $\angle A O B$ and $\angle B O C$ intersect Γ at points P and Q, respectively. The point R is chosen on the line $P Q$ so that $B R=M R$. Prove that $B R \| A C$.
(Here we always assume that an angle bisector is a ray.)
Proposed by Sergey Berlov, Russia
G4 Consider a fixed circle Γ with three fixed points A, B, and C on it. Also, let us fix a real number $\lambda \in(0,1)$. For a variable point $P \notin\{A, B, C\}$ on Γ, let M be the point on the segment $C P$ such
that $C M=\lambda \cdot C P$. Let Q be the second point of intersection of the circumcircles of the triangles $A M P$ and $B M C$. Prove that as P varies, the point Q lies on a fixed circle.

Proposed by Jack Edward Smith, UK
G5 Convex quadrilateral $A B C D$ has $\angle A B C=\angle C D A=90^{\circ}$. Point H is the foot of the perpendicular from A to $B D$. Points S and T lie on sides $A B$ and $A D$, respectively, such that H lies inside triangle $S C T$ and

$$
\angle C H S-\angle C S B=90^{\circ}, \quad \angle T H C-\angle D T C=90^{\circ} .
$$

Prove that line $B D$ is tangent to the circumcircle of triangle $T S H$.
G6 Let $A B C$ be a fixed acute-angled triangle. Consider some points E and F lying on the sides $A C$ and $A B$, respectively, and let M be the midpoint of $E F$. Let the perpendicular bisector of $E F$ intersect the line $B C$ at K, and let the perpendicular bisector of $M K$ intersect the lines $A C$ and $A B$ at S and T, respectively. We call the pair (E, F) interesting, if the quadrilateral $K S A T$ is cyclic.
Suppose that the pairs $\left(E_{1}, F_{1}\right)$ and $\left(E_{2}, F_{2}\right)$ are interesting. Prove that $\frac{E_{1} E_{2}}{A B}=\frac{F_{1} F_{2}}{A C}$
Proposed by Ali Zamani, Iran
G7 Let $A B C$ be a triangle with circumcircle Ω and incentre I. Let the line passing through I and perpendicular to $C I$ intersect the segment $B C$ and the arc $B C$ (not containing A) of Ω at points U and V, respectively. Let the line passing through U and parallel to $A I$ intersect $A V$ at X, and let the line passing through V and parallel to $A I$ intersect $A B$ at Y. Let W and Z be the midpoints of $A X$ and $B C$, respectively. Prove that if the points I, X, and Y are collinear, then the points I, W, and Z are also collinear.

Proposed by David B. Rush, USA

- Number Theory

N1 Let $n \geq 2$ be an integer, and let A_{n} be the set

$$
A_{n}=\left\{2^{n}-2^{k} \mid k \in \mathbb{Z}, 0 \leq k<n\right\} .
$$

Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of A_{n}.
Proposed by Serbia
N2 Determine all pairs (x, y) of positive integers such that

$$
\sqrt[3]{7 x^{2}-13 x y+7 y^{2}}=|x-y|+1
$$

Proposed by Titu Andreescu, USA

N3 For each positive integer n, the Bank of Cape Town issues coins of denomination $\frac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most most $99+\frac{1}{2}$, prove that it is possible to split this collection into 100 or fewer groups, such that each group has total value at most 1 .

N4 Let $n>1$ be a given integer. Prove that infinitely many terms of the sequence $\left(a_{k}\right)_{k \geq 1}$, defined by

$$
a_{k}=\left\lfloor\frac{n^{k}}{k}\right\rfloor
$$

are odd. (For a real number $x,\lfloor x\rfloor$ denotes the largest integer not exceeding x.)
Proposed by Hong Kong
N5 Find all triples (p, x, y) consisting of a prime number p and two positive integers x and y such that $x^{p-1}+y$ and $x+y^{p-1}$ are both powers of p.
Proposed by Belgium
N6 Let $a_{1}<a_{2}<\cdots<a_{n}$ be pairwise coprime positive integers with a_{1} being prime and $a_{1} \geq n+2$. On the segment $I=\left[0, a_{1} a_{2} \cdots a_{n}\right]$ of the real line, mark all integers that are divisible by at least one of the numbers a_{1}, \ldots, a_{n}. These points split I into a number of smaller segments. Prove that the sum of the squares of the lengths of these segments is divisible by a_{1}.
Proposed by Serbia
N7 Let $c \geq 1$ be an integer. Define a sequence of positive integers by $a_{1}=c$ and

$$
a_{n+1}=a_{n}^{3}-4 c \cdot a_{n}^{2}+5 c^{2} \cdot a_{n}+c
$$

for all $n \geq 1$. Prove that for each integer $n \geq 2$ there exists a prime number p dividing a_{n} but none of the numbers a_{1}, \ldots, a_{n-1}.

Proposed by Austria
N8 For every real number x, let $\|x\|$ denote the distance between x and the nearest integer.
Prove that for every pair (a, b) of positive integers there exist an odd prime p and a positive integer k satisfying

$$
\left\|\frac{a}{p^{k}}\right\|+\left\|\frac{b}{p^{k}}\right\|+\left\|\frac{a+b}{p^{k}}\right\|=1
$$

Proposed by Geza Kos, Hungary

