

AoPS Community

1991 Czech And Slovak Olympiad IIIA

Czech And Slovak Mathematical Olympiad, Round III, Category A 1991 www.artofproblemsolving.com/community/c1071151 by parmenides51

1	Prove that for any real numbers p, q, r, ϕ ;
	$\cos^2 \phi + q \sin \phi \cos \phi + r \sin^2 \phi \ge \frac{1}{2}(p + r - \sqrt{(p - r)^2 + q^2})$
2	A museum has the shape of a (not necessarily convex) $3n$ -gon. Prove that n custodians can be positioned so as to control all of the museums space.
3	For any permutation p of the set $\{1, 2,, n\}$, let us denote $d(p) = p(1) - 1 + p(2) - 2 + + p(n) - n $. Let $i(p)$ be the number of inversions of p , i.e. the number of pairs $1 \le i < j \le n$ with $p(i) > p(j)$. Prove that $i(p) \le d(p)$.
4	Prove that in all triangles ABC with $\angle A = 2\angle B$ the distance from C to A and to the perpendicular bisector of AB are in the same ratio.
5	In a group of mathematicians everybody has at least one friend (friendship is a symmetric relation). Show that there is a mathematician all of whose friends have average number of friends not smaller than the average number of friends in the whole group.
6	The set <i>N</i> is partitioned into three (disjoint) subsets A_1, A_2, A_3 . Prove that at least one of them has the following property: There exists a positive number <i>m</i> such that for any <i>k</i> one can find numbers $a_1 < a_2 < < a_k$ in that subset satisfying $a_{j+1} - a_j \leq m$ for $j = 1,, k - 1$.

Act of Problem Solving is an ACS WASC Accredited School.