AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 1991

www.artofproblemsolving.com/community/c1071151
by parmenides51

1 Prove that for any real numbers p, q, r, ϕ_{1} :

$$
\cos ^{2} \phi+q \sin \phi \cos \phi+r \sin ^{2} \phi \geq \frac{1}{2}\left(p+r-\sqrt{(p-r)^{2}+q^{2}}\right)
$$

2 A museum has the shape of a (not necessarily convex) $3 n$-gon.
Prove that n custodians can be positioned so as to control all of the museums space.
3 For any permutation p of the set $\{1,2, \ldots, n\}$, let us denote $d(p)=|p(1)-1|+|p(2)-2|+\ldots+$ $|p(n)-n|$.
Let $i(p)$ be the number of inversions of p, i.e. the number of pairs $1 \leq i<j \leq n$ with $p(i)>p(j)$. Prove that $i(p) \leq d(p)$.

4 Prove that in all triangles $A B C$ with $\angle A=2 \angle B$ the distance from C to A and to the perpendicular bisector of $A B$ are in the same ratio.
$5 \quad$ In a group of mathematicians everybody has at least one friend (friendship is a symmetric relation). Show that there is a mathematician all of whose friends have average number of friends not smaller than the average number of friends in the whole group.

6 The set N is partitioned into three (disjoint) subsets A_{1}, A_{2}, A_{3}.
Prove that at least one of them has the following property: There exists a positive number m such that for any k one can find numbers $a_{1}<a_{2}<\ldots<a_{k}$ in that subset satisfying $a_{j+1}-a_{j} \leq m$ for $j=1, \ldots, k-1$.

