AoPS Community

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 1993
www.artofproblemsolving.com/community/c1071156
by parmenides51

1a Let $A B C D$ be a convex quadrilateral and $A^{\prime}, B^{\prime} C^{\prime}, D^{\prime}$ be the midpoints of $A B, B C, C D, D A$, respectively. Let a, b, c, d denote the areas of quadrilaterals into which lines $A^{\prime} C^{\prime}$ and $B^{\prime} D^{\prime}$ divide the quadrilateral $A B C D$ (where a corresponds to vertex A etc.). Prove that $a+c=b+d$.

1b Given a triangle with sides of lengths a, b, c, prove that $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}<2$.
2 If a, b, c, d are real numbers with $b<c<d$, prove that $(a+b+c+d)^{2}>8(a c+b d)$.
3 The Fermat-numbers are defined by $F_{n}=2^{2^{n}}+1$ for $n \in N$.
(a) Prove that $F_{n}=F_{n-1} F_{n-2} \ldots . F_{1} F_{0}+2$ for $n>0$.
(b) Prove that any two different Fermat numbers are coprime

4 Each of the 8 vertices of a given cube is given a value 1 or -1 .
Each of the 6 faces is given the value of product of its four vertices.
Let A be the sum of all the 14 values. Which are the possible values of A ?

