AoPS Community

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 1994

www.artofproblemsolving.com/community/c1071157
by parmenides51

1a In a half-ball of radius 3 is inscribed a cylinder with base lying on the base plane of the half-ball, and another such cylinder with equal volume. If the base-radius of the first cylinder is $\sqrt{3}$, what is the base-radius of the other one?

1b Let C be a point on the extension of the diameter $A B$ of a circle. A line through C is tangent to the circle at point N. The bisector of $\angle A C N$ meets the lines $A N$ and $B N$ at P and Q respectively. Prove that $P N=Q N$.

2a Find all primes p, q, r and natural numbers n such that $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=\frac{1}{n}$.
2b Find all integers x, y, z such that $x^{3}+5 y^{3}=9 z^{3}$.
3a Let $x_{1}, x_{2}, \ldots, x_{1994}$ be positive real numbers. Prove that

$$
\left(\frac{x_{1}}{x_{2}}\right)^{\frac{x_{1}}{x_{2}}}\left(\frac{x_{2}}{x_{3}}\right)^{\frac{x_{2}}{x_{3}}} \ldots\left(\frac{x_{1993}}{x_{1994}}\right)^{\frac{x_{19}}{x_{193}}} \geq\left(\frac{x_{1}}{x_{2}}\right)^{\frac{x_{2}}{x_{1}}}\left(\frac{x_{2}}{x_{3}}\right)^{\frac{x_{3}}{x_{2}}} \ldots\left(\frac{x_{1993}}{x_{1994}}\right)^{\frac{x_{1994}}{x_{1993}}}
$$

3b Prove that there is no function $f: Z \rightarrow Z$ such that $f(f(x))=x+1$ for all x.
4a In a group of 20 people, each person sends a letter to 10 of the others.
Prove that there are two persons who send a letter to each other.
4b Finitely many cities are connected by one-way roads. For any two cities it is possible to come from one of them to the other (with possible transfers), but not necessarily both ways. Prove that there is a city which can be reached from any other city, and that there is a city from which any other city can be reached.

