AoPS Community

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 1996

www.artofproblemsolving.com/community/c1071183
by parmenides51

1 Let S be a circle with center C and radius r, and let $P \neq C$ be an arbitrary point.
A line ℓ through P intersects the circle in X and Y. Let Z be the midpoint of $X Y$.
Prove that the points Z, as ℓ varies, describe a circle. Find the center and radius of this circle.
2 Prove that $[\sqrt{n}+\sqrt{n+1}]=[\sqrt{4 n+1}]$ for all $n \in N$.
$3 \quad$ Per and Kari each have n pieces of paper. They both write down the numbers from 1 to $2 n$ in an arbitrary order, one number on each side. Afterwards, they place the pieces of paper on a table showing one side. Prove that they can always place them so that all the numbers from 1 to $2 n$ are visible at once.
$4 \quad$ Let $f: N \rightarrow N$ be a function such that $f(f(1995))=95, f(x y)=f(x) f(y)$ and $f(x) \leq x$ for all x, y.
Find all possible values of $f(1995)$.

