AoPS Community

1998 Abels Math Contest (Norwegian MO)

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 1998

www.artofproblemsolving.com/community/c1071185
by parmenides51

1 Let $a_{0}, a_{1}, a_{2}, \ldots$ be an infinite sequence of positive integers such that $a_{0}=1$ and $a_{i}^{2}>a_{i-1} a_{i+1}$ for all $i>0$.
(a) Prove that $a_{i}<a_{1}^{i}$ for all $i>1$.
(b) Prove that $a_{i}>i$ for all i.

2 Let be given an $n \times n$ chessboard, $n \in N$. We wish to tile it using particular tetraminos which can be rotated. For which n is this possible if we use
(a) T-tetraminos
(b) both kinds of L-tetraminos?

3 Let n be a positive integer.
(a) Prove that $1^{5}+3^{5}+5^{5}+\ldots+(2 n-1)^{5}$ is divisible by n.
(b) Prove that $1^{3}+3^{3}+5^{3}+\ldots+(2 n-1)^{3}$ is divisible by n^{2}.

4 Let A, B, P be points on a line ℓ, with P outside the segment $A B$. Lines a and b pass through A and B and are perpendicular to ℓ. A line m through P, which is neither parallel nor perpendicular to ℓ, intersects a and b at Q and R, respectively. The perpendicular from B to $A R$ meets a and $A R$ at S and U, and the perpendicular from A to $B Q$ meets b and $B Q$ at T and V, respectively.
(a) Prove that P, S, T are collinear.
(b) Prove that P, U, V are collinear.

