

AoPS Community

1998 Abels Math Contest (Norwegian MO)

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 1998

www.artofproblemsolving.com/community/c1071185 by parmenides51

- 1 Let $a_0, a_1, a_2, ...$ be an infinite sequence of positive integers such that $a_0 = 1$ and $a_i^2 > a_{i-1}a_{i+1}$ for all i > 0.
 - (a) Prove that $a_i < a_1^i$ for all i > 1.
 - (b) Prove that $a_i > i$ for all i.
- Let be given an n × n chessboard, n ∈ N. We wish to tile it using particular tetraminos which can be rotated. For which n is this possible if we use
 (a) T-tetraminos
 (b) both kinds of L-tetraminos?
- 3 Let *n* be a positive integer. (a) Prove that $1^5 + 3^5 + 5^5 + ... + (2n-1)^5$ is divisible by *n*. (b) Prove that $1^3 + 3^3 + 5^3 + ... + (2n-1)^3$ is divisible by n^2 .
- Let A, B, P be points on a line l, with P outside the segment AB. Lines a and b pass through A and B and are perpendicular to l. A line m through P, which is neither parallel nor perpendicular to l, intersects a and b at Q and R, respectively. The perpendicular from B to AR meets a and AR at S and U, and the perpendicular from A to BQ meets b and BQ at T and V, respectively.
 (a) Prove that P, S, T are collinear.
 (b) Prove that P, U, V are collinear.

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱