AoPS Community

1999 Abels Math Contest (Norwegian MO)

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 1999

www.artofproblemsolving.com/community/c1071186
by parmenides51

1a Find a function f such that $f\left(t^{2}+t+1\right)=t$ for all real $t \geq 0$
1b If a, b, c, d, e are real numbers, prove the inequality $a^{2}+b^{2}+c^{2}+d^{2}+e^{2} \geq a(b+c+d+e)$.
2a \quad Find all integers m and n such that $2 m^{2}+n^{2}=2 m n+3 n$
2b If a, b, c are positive integers such that $b\left|a^{3}, c\right| b^{3}$ and $a \mid c^{3}$, prove that $a b c \mid(a+b+c)^{13}$
3 An isosceles triangle $A B C$ with $A B=A C$ and $\angle A=30^{\circ}$ is inscribed in a circle with center O. Point D lies on the shorter arc $A C$ so that $\angle D O C=30^{\circ}$, and point G lies on the shorter arc $A B$ so that $D G=A C$ and $A G<B G$. The line $B G$ intersects $A C$ and $A B$ at E and F, respectively.
(a) Prove that triangle $A F G$ is equilateral.
(b) Find the ratio between the areas of triangles $A F E$ and $A B C$.

4 For every nonempty subset R of $S=\{1,2, \ldots, 10\}$, we define the alternating sum $A(R)$ as follows:
If $r_{1}, r_{2}, \ldots, r_{k}$ are the elements of R in the increasing order, then $A(R)=r_{k}-r_{k-1}+r_{k-2}-\ldots+$ $(-1)^{k-1} r_{1}$.
(a) Is it possible to partition S into two sets having the same alternating sum?
(b) Determine the sum $\sum_{R} A(R)$, where R runs over all nonempty subsets of S.

