

AoPS Community

1999 Abels Math Contest (Norwegian MO)

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 1999

www.artofproblemsolving.com/community/c1071186 by parmenides51

1a	Find a function f such that $f(t^2 + t + 1) = t$ for all real $t \ge 0$
1b	If a, b, c, d, e are real numbers, prove the inequality $a^2 + b^2 + c^2 + d^2 + e^2 \ge a(b + c + d + e)$.
2a	Find all integers m and n such that $2m^2 + n^2 = 2mn + 3n$
2b	If a,b,c are positive integers such that $b a^3,c b^3$ and $a c^3$, prove that $abc (a+b+c)^{13}$
3	An isosceles triangle ABC with $AB = AC$ and $\angle A = 30^{\circ}$ is inscribed in a circle with center O . Point D lies on the shorter arc AC so that $\angle DOC = 30^{\circ}$, and point G lies on the shorter arc AB so that $DG = AC$ and $AG < BG$. The line BG intersects AC and AB at E and F , respectively. (a) Prove that triangle AFG is equilateral. (b) Find the ratio between the areas of triangles AFE and ABC .
4	For every nonempty subset R of $S = \{1, 2,, 10\}$, we define the alternating sum $A(R)$ as follows: If $r_1, r_2,, r_k$ are the elements of R in the increasing order, then $A(R) = r_k - r_{k-1} + r_{k-2} + (-1)^{k-1}r_1$. (a) Is it possible to partition S into two sets having the same alternating sum? (b) Determine the sum $\sum_R A(R)$, where R runs over all nonempty subsets of S .

AoPS Online 🔯 AoPS Academy 🗿 AoPS & CADEMY