Art of Problem Solving

AoPS Community

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 2004

www.artofproblemsolving.com/community/c1071187
by parmenides51

1a If m is a positive integer, prove that 2^{m} cannot be written as a sum of two or more consecutive natural numbers.

1b Let $a_{1}, a_{2}, a_{3}, \ldots$ be a strictly increasing sequence of positive integers. A number a_{n} in the sequence is said to be lucky if it is the sum of several (not necessarily distinct) smaller terms of the sequence, and unlucky otherwise. (For example, in the sequence $4,6,14,15,25, \ldots$ numbers $4,6,15$ are unlucky, while $14=4+4+6$ and $25=4+6+15$ are lucky.) Prove that there are only finitely many unlucky numbers in the sequence.

2 (a) Prove that $(x+y+z)^{2} \leq 3\left(x^{2}+y^{2}+z^{2}\right)$ for any real numbers x, y, z.
(b) If positive numbers a, b, c satisfy $a+b+c \geq a b c$, prove that $a^{2}+b^{2}+c^{2} \geq \sqrt{3} a b c$

3 In a quadrilateral $A B C D$ with $\angle A=60^{\circ}, \angle B=90^{\circ}, \angle C=120^{\circ}$, the point M of intersection of the diagonals satisfies $B M=1$ and $M D=2$.
(a) Prove that the vertices of $A B C D$ lie on a circle and find the radius of that circle.
(b) Find the area of quadrilateral $A B C D$.

4 Among the n inhabitants of an island, where n is even, every two are either friends or enemies. Some day, the chief of the island orders that each inhabitant (including himself) makes and wears a necklace consisting of marbles, in such a way that two necklaces have a marble of the same type if and only if their owners are friends.
(a) Show that the chiefs order can be achieved by using $n^{2} / 4$ different types of stones.
(b) Prove that this is not necessarily true with less than $n^{2} / 4$ types.

