AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 2001

www.artofproblemsolving.com/community/c1071607
by parmenides51

1 Determine all polynomials P such that for every real number $x, P(x)^{2}+P(-x)=P\left(x^{2}\right)+P(x)$

2 Given a triangle $P Q X$ in the plane, with $P Q=3, P X=2.6$ and $Q X=3.8$. Construct a rightangled triangle $A B C$ such that the incircle of $\triangle A B C$ touches $A B$ at P and $B C$ at Q, and point X lies on the line $A C$.

3 Find all triples of real numbers (a, b, c) for which the set of solutions x of $\sqrt{2 x^{2}+a x+b}>x-c$ is the set $(-\infty, 0] \cup(1, \infty)$.

4 In a certain language there are n letters. A sequence of letters is a word, if there are no two equal letters between two other equal letters. Find the number of words of the maximum length.

5 A sheet of paper has the shape of an isosceles trapezoid $C_{1} A B_{2} C_{2}$ with the shorter base $B_{2} C_{2}$. The foot of the perpendicular from the midpoint D of $C_{1} C_{2}$ to $A C_{1}$ is denoted by B_{1}. Suppose that upon folding the paper along $D B_{1}, A D$ and $A C_{1}$ points C_{1}, C_{2} become a single point C and points B_{1}, B_{2} become a point B. The area of the tetrahedron $A B C D$ is $64 \mathrm{~cm}^{2}$. Find the sides of the initial trapezoid.

6 Let be given natural numbers $a_{1}, a_{2}, \ldots, a_{n}$ and a function $f: Z \rightarrow R$ such that $f(x)=1$ for all integers $x<0$ and $f(x)=1-f\left(x-a_{1}\right) f\left(x-a_{2}\right) \ldots f\left(x-a_{n}\right)$ for all integers $x \geq 0$. Prove that there exist natural numbers s and t such that for all integers $x>s$ it holds that $f(x+t)=f(x)$.

