AoPS Community

Japan MO Finals 2020

www.artofproblemsolving.com/community/c1072374
by maple116

1 Find all pairs of positive integers (m, n) such that $\frac{n^{2}+1}{2 m}$ and $\sqrt{2^{n-1}+m+4}$ are both integers.
2 Triangle $A B C$ satisfies $B C<A B$ and $B C<A C$. Points D, E lie on segments $A B, A C$ respectively, satisfying $B D=C E=B C$. Lines $B E$ and $C D$ meet at point P, circumcircles of triangle $A B E$ and $A C D$ meet at point Q other than A. Prove that lines $P Q$ and $B C$ are perpendicular.
$3 \quad$ Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that

$$
m^{2}+f(n)^{2}+(m-f(n))^{2} \geq f(m)^{2}+n^{2}
$$

for all pairs of positive integers (m, n).
4 Let $n \geq 2$ be an integer. $3 n$ distinct points are plotted on the circle, where A and B perform the following operation : Firstly, A picks exactly 2 points which haven't been connected yet and connects them by a segment. Secondly, B picks exactly 1 point with no piece and place a piece. Prove that, after consecutive n operations, despite how B acts, A can make the number of segments no less than $\frac{n-1}{6}$, which connect a point with a piece and a point with no piece.

5 Find all infinite sequences of positive integers $\left\{a_{n}\right\}_{n \geq 1}$ satisfying the following condition: there exists a positive constant c such that $\operatorname{gcd}\left(a_{m}+n, a_{n}+m\right)>c(m+n)$ holds for all pairs of positive integers (m, n).

