

AoPS Community

1999 Ukraine Team Selection Test

Ukraine	Team	Selection	Test 1999
---------	------	-----------	-----------

www.artofproblemsolving.com/community/c1073441 by parmenides51

-	Day 1
1	A triangle ABC is given. Points E, F, G are arbitrarily selected on the sides AB, BC, CA , respectively, such that $AF \perp EG$ and the quadrilateral $AEFG$ is cyclic. Find the locus of the intersection point of AF and EG .
2	Show that there exist integers j, k, l, m, n greater than 100 such that $j^2 + k^2 + l^2 + m^2 + n^2 = jklmn - 12$.
3	Let m, n be positive integers with $m \le n$, and let F be a family of m -element subsets of $\{1, 2,, n\}$ satisfying $A \cap B \ne \emptyset$ for all $A, B \in F$. Determine the maximum possible number of elements in F .
-	Day 2
4	If $n \in N$ and $0 < x < \frac{\pi}{2n}$, prove the inequality $\frac{\sin 2x}{\sin x} + \frac{\sin 3x}{\sin 2x} + \ldots + \frac{\sin(n+1)x}{\sin nx} < 2\frac{\cos x}{\sin^2 x}$.
5	A convex pentagon $ABCDE$ with $DC = DE$ and $\angle DCB = \angle DEA = 90^{\circ}$ is given. Let F be a point on the segment AB such that $AF : BF = AE : BC$. Prove that $\angle FCE = \angle ADE$ and $\angle FEC = \angle BDC$.
6	Show that for any $n \in N$ the polynomial $f(x) = (x^2 + x)^{2^n} + 1$ is irreducible over $Z[x]$.
-	Day 3
7	Let $P_1P_2P_n$ be an oriented closed polygonal line with no three segments passing through a single point. Each point P_i is assinged the angle $180^o - \angle P_{i-1}P_iP_{i+1} \ge 0$ if P_{i+1} lies on the left from the ray $P_{i-1}P_i$, and the angle $-(180^o - \angle P_{i-1}P_iP_{i+1}) < 0$ if P_{i+1} lies on the right. Prove that if the sum of all the assigned angles is a multiple of 720^o , then the number of self-intersections of the polygonal line is odd
8	Find all pairs (x, n) of positive integers for which $x^n + 2^n + 1$ divides $x^{n+1} + 2^{n+1} + 1$.
9	Find all functions $u : R \to R$ for which there is a strictly increasing function $f : R \to R$ such that $f(x + y) = f(x)u(y) + f(y)$ for all $x, y \in R$.

AoPS Community

1999 Ukraine Team Selection Test

-	Day 4
10	For a natural number n , let $w(n)$ denote the number of (positive) prime divisors of n . Find the smallest positive integer k such that $2^{w(n)} \le k \sqrt[4]{n}$ for each $n \in N$.
11	Let $ABCDEF$ be a convex hexagon such that $BCEF$ is a parallelogram and ABF an equilateral triangle. Given that $BC = 1$, $AD = 3$, $CD + DE = 2$, compute the area of $ABCDEF$
12	In a group of $n \ge 4$ persons, every three who know each other have a common signal. Assume that these signals are not repeated and that there are $m \ge 1$ signals in total. For any set of four persons in which there are three having a common signal, the fourth person has a common signal with at most one of them. Show that there three persons who have a common signal, such that the number of persons having no signal with anyone of them does not exceed $\left[n+3-\frac{18m}{n}\right]$

AoPS Online 🔇 AoPS Academy 🔇 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.