

AoPS Community

2012 Czech And Slovak Olympiad IIIA

Czech And Slovak Mathematical Olympiad, Round III, Category A 2012 www.artofproblemsolving.com/community/c1073482

by parmenides51

Find all integers for which n is $n^4 - 3n^2 + 9$ prime
Find out the maximum possible area of the triangle ABC whose medians have lengths satisfying inequalities $m_a \le 2, m_b \le 3, m_c \le 4$.
Prove that there are two numbers u and v , between any 101 real numbers that apply $100 u - v \cdot 1 - uv \le (1 + u^2)(1 + v^2)$
Inside the parallelogram $ABCD$ is a point X. Make a line that passes through point X and divides the parallelogram into two parts whose areas differ from each other the most.
In a group of 90 children each has at least 30 friends (friendship is mutual). Prove that they can be divided into three 30-member groups so that each child has its own a group of at least one friend.
In the set of real numbers solve the system of equations $x^4 + y^2 + 4 = 5yz \ y^4 + z^2 + 4 = 5zx \ z^4 + x^2 + 4 = 5xy$

Act of Problem Solving is an ACS WASC Accredited School.