AoPS Community

2013 Czech And Slovak Olympiad IIIA

Czech And Slovak Mathematical Olympiad, Round III, Category A 2013

www.artofproblemsolving.com/community/c1073483
by parmenides51

1 Find all pairs of integers a, b for which equality holds $\frac{a^{2}+1}{2 b^{2}-3}=\frac{a-1}{2 b-1}$
2 Each of the thieves in the n-member party ($n \geq 3$) charged a certain number of coins. All the coins were 100 n . Thieves decided to share their prey as follows: at each step, one of the bandits puts one coin to the other two. Find them all natural numbers $n \geq 3$ for which after a finite number of steps each outlaw can have 100 coins no matter how many coins each thug has charged.

3 In the parallelolgram $\mathrm{A} B C D$ with the center S, let O be the center of the circle of the inscribed triangle $A B D$ and let T be the touch point with the diagonal $B D$. Prove that the lines $O S$ and $C T$ are parallel.

4 On the board is written in decimal the integer positive number N. If it is not a single digit number, wipe its last digit c and replace the number m that remains on the board with a number $m-3 c$. (For example, if $N=1,204$ on the board, $120-3 \cdot 4=108$.) Find all the natural numbers N, by repeating the adjustment described eventually we get the number 0 .

5 Given the parallelogram $A B C D$ such that the feet K, L of the perpendiculars from point D on the sides $A B, B C$ respectively are internal points. Prove that $K L \| A C$ when $|\angle B C A|+|\angle A B D|=$ $|\angle B D A|+|\angle A C D|$.

6 Find all positive real numbers p such that $\sqrt{a^{2}+p b^{2}}+\sqrt{b^{2}+p a^{2}} \geq a+b+(p-1) \sqrt{a b}$ holds for any pair of positive real numbers a, b.

