AoPS Community

Croatia Team Selection Test 2001

www.artofproblemsolving.com/community/c1074439
by parmenides51

1 Consider $A=\{1,2, \ldots, 16\}$. A partition of A into nonempty sets $A_{1}, A_{2}, \ldots, A_{n}$ is said to be good if none of the Ai contains elements a, b, c (not necessarily distinct) such that $a=b+c$.
(a) Find a good partition $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ of A.
(b) Prove that no partition $\left\{A_{1}, A_{2}, A_{3}\right\}$ of A is good
$2 \quad$ Circles k_{1} and k_{2} intersect at P and Q, and A and B are the tangency points of their common tangent that is closer to P (where A is on k_{1} and B on k_{2}). The tangent to k_{1} at P intersects k_{2} again at C. The lines $A P$ and $B C$ meet at R. Show that the lines $B P$ and $B C$ are tangent to the circumcircle of triangle $P Q R$.

3 Find all solutions of the equation $\left(a^{a}\right)^{5}=b^{b}$ in positive integers.

