AoPS Community

Austrian-Polish Competition 1979

www.artofproblemsolving.com/community/c1074599
by parmenides51, Juno

- Individual

1 On sides $A B$ and $B C$ of a square $A B C D$ the respective points E and F have been chosen so that $B E=B F$. Let $B N$ be the altitude in triangle $B C E$. Prove that $\angle D N F=90$.

2 Find all polynomials of the form

$$
P_{n}(x)=n!x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+(-1)^{n}(n+1)
$$

with integer coefficients, having n real roots x_{1}, \ldots, x_{n} satisfying $k \leq x_{k} \leq k+1$ for $k=1, \ldots, n$.

3 Find all positive integers n such that the inequality

$$
\left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} a_{i}\right)-\sum_{i=1}^{n} a_{i}^{3} \geq 6 \prod_{i=1}^{n} a_{i}
$$

holds for any n positive numbers a_{1}, \ldots, a_{n}.
4 Determine all functions $f: N_{0} \rightarrow R$ satisfying $f(x+y)+f(x-y)=f(3 x)$ for all x, y.
5 The circumcenter and incenter of a given tetrahedron coincide. Prove that all its faces are congruent.
$6 \quad$ A positive integer n and a real number a are given. Find all n-tuples $\left(x_{1}, \ldots, x_{n}\right)$ of real numbers that satisfy the system of equations $\sum_{i=1}^{n} x_{i}^{k}=a^{k}$ for $k=1,2, \ldots, n$.

- Team

7 Let n and m be fixed positive integers. The hexagon $A B C D E F$ with vertices $A=(0,0), B=$ $(n, 0), C=(n, m), D=(n-1, m), E=(n-1,1), F=(0,1)$ has been partitioned into $n+m-1$ unit squares. Find the number of paths from A to C along grid lines, passing through every grid node at most once.

8 Let A, B, C, D be four points in space, and M and N be the midpoints of $A C$ and $B D$, respectively. Show that

$$
A B^{2}+B C^{2}+C D^{2}+D A^{2}=A C^{2}+B D^{2}+4 M N^{2}
$$

9 Find the greatest power of 2 that divides $a_{n}=\left[(3+\sqrt{11})^{2 n+1}\right]$, where n is a given positive integer.

