

AoPS Community

Israel Joseph Gillis Mathematical Olympiad 1996
www.artofproblemsolving.com/community/c1075221
by parmenides51

1	Let a be a prime number and $n > 2$ an integer. Find all integer solutions of the equation $x^n + ay^n = a^2 z^n$.
2	Find all polynomials $P(x)$ satisfying $P(x+1) - 2P(x) + P(x-1) = x$ for all x
3	The angles of an acute triangle <i>ABC</i> at α, β, γ . Let <i>AD</i> be a height, <i>CF</i> a median, and <i>BE</i> the bisector of $\angle B$. Show that <i>AD</i> , <i>CF</i> and <i>BE</i> are concurrent if and only if $\cos \gamma \tan \beta = \sin \alpha$.
4	Eight guests arrive to a hotel with four rooms. Each guest dislikes at most three other guests and doesnt want to share a room with any of them (this feeling is mutual). Show that the guests can reside in the four rooms, with two persons in each room
5	Suppose that the circumradius R and the inradius r of a triangle ABC satisfy $R = 2r$. Prove that the triangle is equilateral.
6	Let x, y, z be real numbers with $ x , y , z > 2$. What is the smallest possible value of $ xyz + 2(x + y + z) $?
7	Find all positive integers a, b, c such that $a^2 = 4(b+c)$ and $a^3 - 2b^3 - 4c^3 = \frac{1}{2}abc$
8	Consider the function $f : N \to N$ given by (i) $f(1) = 1$, (ii) $f(2n) = f(n)$ for any $n \in N$, (iii) $f(2n+1) = f(2n) + 1$ for any $n \in N$. (a) Find the maximum value of $f(n)$ for $1 \le n \le 1995$; (b) Find all values of f on this interval.

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.