AoPS Community

Italy TST 1993

www.artofproblemsolving.com/community/c1075280
by parmenides51

1 Let $x_{1}, x_{2}, \ldots, x_{n}(n \geq 2)$ be positive numbers with the sum 1 . Prove that

$$
\sum_{i=1}^{n} \frac{1}{\sqrt{1-x_{i}}} \geq n \sqrt{\frac{n}{n-1}}
$$

2 Suppose that p, q are prime numbers such that $\sqrt{p^{2}+7 p q+q^{2}}+\sqrt{p^{2}+14 p q+q^{2}}$ is an integer. Show that $p=q$.

3 Let $A B C$ be an isosceles triangle with base $A B$ and D be a point on side $A B$ such that the incircle of triangle $A C D$ is congruent to the excircle of triangle $D C B$ across C. Prove that the diameter of each of these circles equals half the altitude of $\triangle A B C$ from A
$4 \quad$ An $m \times n$ chessboard with $m, n \geq 2$ is given.
Some dominoes are placed on the chessboard so that the following conditions are satisfied:
(i) Each domino occupies two adjacent squares of the chessboard,
(ii) It is not possible to put another domino onto the chessboard without overlapping,
(iii) It is not possible to slide a domino horizontally or vertically without overlapping.

Prove that the number of squares that are not covered by a domino is less than $\frac{1}{5} \mathrm{mn}$.

