Art of Problem Solving

AoPS Community

Romania Team Selection Test 1995

www.artofproblemsolving.com/community/c1075639
by parmenides51, s.m.a, SUPERMAN2, Nazar_Serdyuk, soryn, KDS

- Day 1

1 Let $A D$ be the altitude of a triangle $A B C$ and E, F be the incenters of the triangle $A B D$ and $A C D$, respectively. line $E F$ meets $A B$ and $A C$ at K and L. prove tht $A K=A L$ if and only if $A B=A C$ or $A=90$

2 Find all positive integers x, y, z, t such that x, y, z are pairwise coprime and $(x+y)(y+z)(z+x)=$ xyzt.

3 Let $n \geq 6$ and $3 \leq p<n-p$ be two integers. The vertices of a regular n-gon are colored so that p vertices are red and the others are black. Prove that there exist two congruent polygons with at least $[p / 2]+1$ vertices, one with all the vertices red and the other with all the vertices black.

4 Let m, n be positive integers, greater than 2.Find the number of polynomials of degree $2 n-1$ with distinct coefficients from the set $\{1,2, \ldots, m\}$ which are divisible by $x^{n-1}+x^{n-2}+\ldots+1$.

- Day 2

1 The sequence $\left(x_{n}\right)$ is defined by $x_{1}=1, x_{2}=a$ and $x_{n}=(2 n+1) x_{n-1}-\left(n^{2}-1\right) x_{n-2} \forall n \geq 3$, where $a \in N^{*}$.For which value of a does the sequence have the property that $x_{i} \mid x_{j}$ whenever $i<j$.

2 Suppose that n polygons of area $s=(n-1)^{2}$ are placed on a polygon of area $S=\frac{n(n-1)^{2}}{2}$. Prove that there exist two of the n smaller polygons whose intersection has the area at least 1.

3 Let M, N, P, Q be points on sides $A B, B C, C D, D A$ of a convex quadrilateral $A B C D$ such that $A Q=D P=C N=B M$. Prove that if $M N P Q$ is a square, then $A B C D$ is also a square.

4 A convex set S on a plane, not lying on a line, is painted in p colors.
Prove that for every $n \geq 3$ there exist infinitely many congruent n-gons whose vertices are of the same color.

```
- Day 3
```


AoPS Community

1995 Romania Team Selection Test

1 Let $a_{1}, a_{2}, \ldots ., a_{n}$ be distinct positive integers.
Prove that $\left(a_{1}^{5}+\ldots+a_{n}^{5}\right)+\left(a_{1}^{7}+\ldots+a_{n}^{7}\right) \geq 2\left(a_{1}^{3}+\ldots+a_{n}^{3}\right)^{2}$ and find the cases of equality.
2 A cube is partitioned into finitely many rectangular parallelepipeds with the edges parallel to the edges of the cube. Prove that if the sum of the volumes of the circumspheres of these parallelepipeds equals the volume of the circumscribed sphere of the cube, then all the parallelepipeds are cubes.

3 Let f be an irreducible (in $Z[x]$) monic polynomial with integer coefficients and of odd degree greater than 1 . Suppose that the modules of the roots of f are greater than 1 and that $f(0)$ is a square-free number. Prove that
the polynomial $g(x)=f\left(x^{3}\right)$ is also irreducible
4 Find a sequence of positive integers $f(n)(n \in \mathbb{N})$ such that:
(i) $f(n) \leq n^{8}$ for any $n \geq 2$;
(ii) for any distinct $a_{1}, \cdots, a_{k}, n, f(n) \neq f\left(a_{1}\right)+\cdots+f\left(a_{k}\right)$.

- \quad Day 4

1 How many colorings of an n-gon in $p \geq 2$ colors are there such that no two neighboring vertices have the same color?

2 For each positive integer n, define $f(n)=l c m(1,2, \ldots, n)$.
(a)Prove that for every k there exist k consecutive positive integers on which f is constant.
(b)Find the maximum possible cardinality of a set of consecutive positive integers on which f is strictly increasing and find all sets for which this maximum is attained.

3 The altitudes of a triangle have integer length and its inradius is a prime number. Find all possible values of the sides of the triangle.

4 Let $A B C D$ be a convex quadrilateral. Suppose that similar isosceles triangles $A P B, B Q C, C R D, D S A$ with the bases on the sides of $A B C D$ are constructed in the exterior of the quadrilateral such that $P Q R S$ is a rectangle but not a square. Show that $A B C D$ is a rhombus.

