AoPS Community

Romania Team Selection Test 1993

www.artofproblemsolving.com/community/c1075640
by parmenides51, AndrewROM, KDS, Fitim, FOURRIER

- BMO TST

1 Consider the sequence $z_{n}=(1+i)(2+i) \ldots(n+i)$.
Prove that the sequence $\operatorname{Im} z_{n}$ contains infinitely many positive and infinitely many negative numbers.

2 Let $A B C$ be a triangle inscribed in the circle $\mathcal{C}(O, R)$ and circumscribed to the circle $\mathcal{C}(L, r)$. Denote $d=\frac{R r}{R+r}$. Show that there exists a triangle $D E F$ such that for any interior point M in $A B C$ there exists a point X on the sides of $D E F$ such that $M X \leq d$.

Dan Brnzei

3 Show that the set $\left\{1,2, \ldots, 2^{n}\right\}$ can be partitioned in two classes, none of which contains an arithmetic progression of length $2 n$.

4 Prove that the equation $(x+y)^{n}=x^{m}+y^{m}$ has a unique solution in integers with $x>y>0$ and $m, n>1$.

- IMO TST

- Day 1

1 Find max. numbers A wich is true ineq.:
$\frac{x}{\sqrt{y^{2}+z^{2}}}+\frac{y}{\sqrt{x^{2}+z^{2}}}+\frac{z}{\sqrt{x^{2}+y^{2}}} \geq A$
x, y, z are positve reals numberes! :wink:
$2 \quad x^{2}+y^{2}+z^{2}=1993$ then prove $x+y+z$ can't be a perfect square:
3 Suppose that each of the diagonals $A D, B E, C F$ divides the hexagon $A B C D E F$ into two parts of the same area and perimeter. Does the hexagon necessarily have a center of symmetry?
$4 \quad$ Let Y be the family of all subsets of $X=\{1,2, \ldots, n\}(n>1)$ and let $f: Y \rightarrow X$ be an arbitrary mapping. Prove that there exist distinct subsets A, B of X such that $f(A)=f(B)=\max A \triangle B$, where $A \triangle B=(A-B) \cup(B-A)$.

- Day 2

AoPS Community

1993 Romania Team Selection Test

1 Let $f: R^{+} \rightarrow R$ be a strictly increasing function such that $f\left(\frac{x+y}{2}\right)<\frac{f(x)+f(y)}{2}$ for all $x, y>0$. Prove that the sequence $a_{n}=f(n)(n \in N)$ does not contain an infinite arithmetic progression.

2 For coprime integers $m>n>1$ consider the polynomials $f(x)=x^{m+n}-x^{m+1}-x+1$ and $g(x)=x^{m+n}+x^{n+1}-x+1$. If f and g have a common divisor of degree greater than 1 , find this divisor.
$3 \quad$ Find all integers $n>1$ for which there is a set B of n points in the plane such that for any $A \in B$ there are three points $X, Y, Z \in B$ with $A X=A Y=A Z=1$.

4 For each integer $n>3$ find all quadruples $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)$ of positive integers with $n_{1}+n_{2}+$ $n_{3}+n_{4}=n$ which maximize the expression

$$
\frac{n!}{n_{1}!n_{2}!n_{3}!n_{4}!} 22^{\binom{n_{1}}{2}+\binom{n_{2}}{2}+\binom{n_{3}}{2}+\binom{n_{4}}{2}+n_{1} n_{2}+n_{2} n_{3}+n_{3} n_{4}}
$$

- Day 3

1 Define the sequence $\left(x_{n}\right)$ as follows: the first term is 1 , the next two are 2,4 , the next three are $5,7,9$, the next four are $10,12,14,16$, and so on. Express x_{n} as a function of n.

2 Suppose that D, E, F are points on sides $B C, C A, A B$ of a triangle $A B C$ respectively such that $B D=C E=A F$ and $\angle B A D=\angle C B E=\angle A C F$. Prove that the triangle $A B C$ is equilateral.

3 Let $p \geq 5$ be a prime number.Prove that for any partition of the set $P=\{1,2,3, \ldots, p-1\}$ in 3 subsets there exists numbers x, y, z each belonging to a distinct subset, such that $x+y \equiv$ $z($ modp $)$

