

AoPS Community

1993 Romania Team Selection Test

Romania Team Selection Test 1993

www.artofproblemsolving.com/community/c1075640 by parmenides51, AndrewROM, KDS, Fitim, FOURRIER

-	BMO TST
1	Consider the sequence $z_n = (1+i)(2+i)(n+i)$. Prove that the sequence $Im z_n$ contains infinitely many positive and infinitely many negative numbers.
2	Let <i>ABC</i> be a triangle inscribed in the circle $C(O, R)$ and circumscribed to the circle $C(L, r)$. Denote $d = \frac{Rr}{R+r}$. Show that there exists a triangle <i>DEF</i> such that for any interior point <i>M</i> in <i>ABC</i> there exists a point <i>X</i> on the sides of <i>DEF</i> such that $MX \le d$. Dan Brnzei
3	Show that the set $\{1, 2,, 2^n\}$ can be partitioned in two classes, none of which contains an arithmetic progression of length $2n$.
4	Prove that the equation $(x + y)^n = x^m + y^m$ has a unique solution in integers with $x > y > 0$ and $m, n > 1$.
-	IMO TST
-	Day 1
1	Find max. numbers A wich is true ineq.: $\frac{x}{\sqrt{y^2+z^2}} + \frac{y}{\sqrt{x^2+z^2}} + \frac{z}{\sqrt{x^2+y^2}} \ge A$ x, y, z are positve reals numberes! :wink:
2	$x^2 + y^2 + z^2 = 1993$ then prove $x + y + z$ can't be a perfect square:
3	Suppose that each of the diagonals <i>AD</i> , <i>BE</i> , <i>CF</i> divides the hexagon <i>ABCDEF</i> into two parts of the same area and perimeter. Does the hexagon necessarily have a center of symmetry?
4	Let <i>Y</i> be the family of all subsets of $X = \{1, 2,, n\}$ ($n > 1$) and let $f : Y \to X$ be an arbitrary mapping. Prove that there exist distinct subsets <i>A</i> , <i>B</i> of <i>X</i> such that $f(A) = f(B) = maxA \triangle B$, where $A \triangle B = (A - B) \cup (B - A)$.
-	Day 2

AoPS Community

1993 Romania Team Selection Test

- 1 Let $f : R^+ \to R$ be a strictly increasing function such that $f\left(\frac{x+y}{2}\right) < \frac{f(x)+f(y)}{2}$ for all x, y > 0. Prove that the sequence $a_n = f(n)$ ($n \in N$) does not contain an infinite arithmetic progression.
- **2** For coprime integers m > n > 1 consider the polynomials $f(x) = x^{m+n} x^{m+1} x + 1$ and $g(x) = x^{m+n} + x^{n+1} x + 1$. If f and g have a common divisor of degree greater than 1, find this divisor.
- **3** Find all integers n > 1 for which there is a set *B* of *n* points in the plane such that for any $A \in B$ there are three points $X, Y, Z \in B$ with AX = AY = AZ = 1.
- **4** For each integer n > 3 find all quadruples (n_1, n_2, n_3, n_4) of positive integers with $n_1 + n_2 + n_3 + n_4 = n$ which maximize the expression

$$\frac{n!}{n_1!n_2!n_3!n_4!} 2^{\binom{n_1}{2} + \binom{n_2}{2} + \binom{n_3}{2} + \binom{n_4}{2} + n_1n_2 + n_2n_3 + n_3n_4}$$

-	Day 3
1	Define the sequence (x_n) as follows: the first term is 1, the next two are 2, 4, the next three are 5, 7, 9, the next four are 10, 12, 14, 16, and so on. Express x_n as a function of n .
2	Suppose that D, E, F are points on sides BC, CA, AB of a triangle ABC respectively such that $BD = CE = AF$ and $\angle BAD = \angle CBE = \angle ACF$. Prove that the triangle ABC is equilateral.
3	Let $p \ge 5$ be a prime number. Prove that for any partition of the set $P = \{1, 2, 3,, p - 1\}$ in 3 subsets there exists numbers x, y, z each belonging to a distinct subset, such that $x + y \equiv z(modp)$

Art of Problem Solving is an ACS WASC Accredited School.