Art of Problem Solving

AoPS Community

Romania Team Selection Test 1989

www.artofproblemsolving.com/community/c1075641
by parmenides51, Nazar_Serdyuk, nhat, enescu

- BMO TST

1 Let M denote the set of $m \times n$ matrices with entries in the set $\{0,1,2,3,4\}$ such that in each row and each column the sum of elements is divisible by 5 . Find the cardinality of set M.

2 Let P be a point on a circle C and let ϕ be a given angle incommensurable with 2π. For each $n \in N, P_{n}$ denotes the image of P under the rotation about the center O of C by the angle $\alpha_{n}=n \phi$. Prove that the set $M=\left\{P_{n} \mid n \geq 0\right\}$ is dense in C.

3 Let $A B C D$ be a parallelogram and M, N be points in the plane such that $C \in(A M)$ and $D \in$ $(B N)$. Lines $N A, N C$ meet lines $M B, M D$ at points E, F, G, H. Show that points E, F, G, H lie on a circle if and only if $A B C D$ is a rhombus.

4 A family of finite sets $\left\{A_{1}, A_{2}, \ldots \ldots ., A_{m}\right\}$ is called equipartitionable if there is a function φ : $\cup_{i=1}^{m} \rightarrow\{-1,1\}$ such that $\sum_{x \in A_{i}} \varphi(x)=0$ for every $i=1, \ldots ., m$. Let $f(n)$ denote the smallest possible number of n-element sets which form a non-equipartitionable family. Prove that
a) $f(4 k+2)=3$ for each nonnegative integer k,
b) $f(2 n) \leq 1+m d(n)$, where $m d(n)$ denotes the least positive non-divisor of n.

5 A laticial cycle of length n is a sequence of lattice points $\left(x_{k}, y_{k}\right), k=0,1, \cdots, n$, such that $\left(x_{0}, y_{0}\right)=\left(x_{n}, y_{n}\right)=(0,0)$ and $\left|x_{k+1}-x_{k}\right|+\left|y_{k+1}-y_{k}\right|=1$ for each k. Prove that for all n, the number of latticial cycles of length n is a perfect square.

- IMO TST

- Day 1

1 Let the sequence (a_{n}) be defined by $a_{n}=n^{6}+5 n^{4}-12 n^{2}-36, n \geq 2$.
(a) Prove that any prime number divides some term in this sequence.
(b) Prove that there is a positive integer not dividing any term in the sequence.
(c) Determine the least $n \geq 2$ for which $1989 \mid a_{n}$.

2 Find all monic polynomials $P(x), Q(x)$ with integer coefficients such that $Q(0)=0$ and $P(Q(x))=$ $(x-1)(x-2) \ldots(x-15)$.

3 Find all pair (m, n) of integer ($m>1, n \geq 3$) with the following property:If an n-gon can be partitioned into m isoceles triangles, then the n-gon has two congruent sides.

AoPS Community

1989 Romania Team Selection Test

4 Let r, n be positive integers. For a set A, let $\binom{A}{r}$ denote the family of all r-element subsets of A. Prove that if A is infinite and $f:\binom{A}{r} \rightarrow 1,2, \ldots, n$ is any function, then there exists an infinite subset B of A such that $f(X)=f(Y)$ for all $X, Y \in\binom{B}{r}$.

- Day 2

1 Let F be the set of all functions $f: N \rightarrow N$ which satisfy $f(f(x))-2 f(x)+x=0$ for all $x \in N$. Determine the set $A=\{f(1989) \mid f \in F\}$.

2 Let a, b, c be coprime nonzero integers. Prove that for any coprime integers u, v, w with $a u+$ $b v+c w=0$ there exist integers m, n, p such that $a=n w-p v, b=p u-m w, c=m v-n u$.

3 (a) Find the point M in the plane of triangle $A B C$ for which the sum $M A+M B+M C$ is minimal.
(b) Given a parallelogram $A B C D$ whose angles do not exceed 120°, determine $\min \{M A+$ $M B+N C+N D+M N \mid M, N$ are in the plane $A B C D\}$ in terms of the sides and angles of the parallelogram.

4 Let A, B, C be variable points on edges $O X, O Y, O Z$ of a trihedral angle $O X Y Z$, respectively. Let $O A=a, O B=b, O C=c$ and R be the radius of the circumsphere S of $O A B C$.
Prove that if points A, B, C vary so that $a+b+c=R+l$, then the sphere S remains tangent to a fixed sphere.

- Day 3

1 Prove that $\sqrt{1+\sqrt{2+\ldots+\sqrt{n}}}<2, \forall n \geq 1$.
2 The sequence $\left(a_{n}\right)$ is defined by $a_{1}=a_{2}=1, a_{3}=199$ and $a_{n+1}=\frac{1989+a_{n} a_{n-1}}{a_{n-2}}$ for all $n \geq 3$. Prove that all terms of the sequence are positive integers

3 Let F be the boundary and M, N be any interior points of a triangle $A B C$. Consider the function $f_{M, N}: F \rightarrow R$ defined by $f_{M, N}(P)=M P^{2}+N P^{2}$ and let $\eta_{M, N}$ be the number of points P for which $f M, N$ attains its minimum.
(a) Prove that $1 \leq \eta_{M, N} \leq 3$.
(b) If M is fixed, find the locus of N for which $\eta_{M, N}>1$.
(c) Prove that the locus of M for which there are points N such that $\eta_{M, N}=3$ is the interior of a tangent hexagon.

