

AoPS Community

1989 Romania Team Selection Test

Romania Team Selection Test 1989

www.artofproblemsolving.com/community/c1075641

by parmenides51, Nazar_Serdyuk, nhat, enescu

-	BMO TST
1	Let M denote the set of $m \times n$ matrices with entries in the set $\{0, 1, 2, 3, 4\}$ such that in each row and each column the sum of elements is divisible by 5. Find the cardinality of set M .
2	Let <i>P</i> be a point on a circle <i>C</i> and let ϕ be a given angle incommensurable with 2π . For each $n \in N$, P_n denotes the image of <i>P</i> under the rotation about the center <i>O</i> of <i>C</i> by the angle $\alpha_n = n\phi$. Prove that the set $M = \{P_n n \ge 0\}$ is dense in <i>C</i> .
3	Let $ABCD$ be a parallelogram and M, N be points in the plane such that $C \in (AM)$ and $D \in (BN)$. Lines NA, NC meet lines MB, MD at points E, F, G, H . Show that points E, F, G, H lie on a circle if and only if $ABCD$ is a rhombus.
4	A family of finite sets $\{A_1, A_2, \dots, A_m\}$ is called <i>equipartitionable</i> if there is a function $\varphi : \bigcup_{i=1}^m \rightarrow \{-1, 1\}$ such that $\sum_{x \in A_i} \varphi(x) = 0$ for every $i = 1, \dots, m$. Let $f(n)$ denote the smallest possible number of <i>n</i> -element sets which form a non-equipartitionable family. Prove that a) $f(4k + 2) = 3$ for each nonnegative integer k , b) $f(2n) \leq 1 + md(n)$, where $md(n)$ denotes the least positive non-divisor of n .
5	A laticial cycle of length n is a sequence of lattice points (x_k, y_k) , $k = 0, 1, \dots, n$, such that $(x_0, y_0) = (x_n, y_n) = (0, 0)$ and $ x_{k+1} - x_k + y_{k+1} - y_k = 1$ for each k . Prove that for all n , the number of latticial cycles of length n is a perfect square.
_	IMO TST
-	Day 1
1	Let the sequence (a_n) be defined by $a_n = n^6 + 5n^4 - 12n^2 - 36, n \ge 2$. (a) Prove that any prime number divides some term in this sequence. (b) Prove that there is a positive integer not dividing any term in the sequence. (c) Determine the least $n \ge 2$ for which $1989 a_n$.
2	Find all monic polynomials $P(x)$, $Q(x)$ with integer coefficients such that $Q(0) = 0$ and $P(Q(x)) = (x - 1)(x - 2)(x - 15)$.
3	Find all pair (m, n) of integer $(m > 1, n \ge 3)$ with the following property: If an <i>n</i> -gon can be partitioned into <i>m</i> isoceles triangles, then the <i>n</i> -gon has two congruent sides.

AoPS Community

1989 Romania Team Selection Test

Let r, n be positive integers. For a set A, let $\binom{A}{r}$ denote the family of all r-element subsets of 4 A. Prove that if A is infinite and $f: \binom{A}{r} \to 1, 2, ..., n$ is any function, then there exists an infinite subset B of A such that f(X) = f(Y) for all $X, Y \in {B \choose r}$. Day 2 Let F be the set of all functions $f: N \to N$ which satisfy f(f(x)) - 2f(x) + x = 0 for all $x \in N$. 1 Determine the set $A = \{f(1989) | f \in F\}$. 2 Let a, b, c be coprime nonzero integers. Prove that for any coprime integers u, v, w with au + bbv + cw = 0 there exist integers m, n, p such that a = nw - pv, b = pu - mw, c = mv - nu. 3 (a) Find the point M in the plane of triangle ABC for which the sum MA + MB + MC is minimal. (b) Given a parallelogram ABCD whose angles do not exceed 120° , determine $min\{MA +$ MB + NC + ND + MN|M, N are in the plane ABCD in terms of the sides and angles of the parallelogram. 4 Let A, B, C be variable points on edges OX, OY, OZ of a trihedral angle OXYZ, respectively. Let OA = a, OB = b, OC = c and R be the radius of the circumsphere S of OABC. Prove that if points A, B, C vary so that a + b + c = R + l, then the sphere S remains tangent to a fixed sphere. Day 3 Prove that $\sqrt{1 + \sqrt{2 + \ldots + \sqrt{n}}} < 2$, $\forall n \ge 1$. 1 The sequence (a_n) is defined by $a_1 = a_2 = 1, a_3 = 199$ and $a_{n+1} = \frac{1989 + a_n a_{n-1}}{a_{n-2}}$ for all $n \ge 3$. 2 Prove that all terms of the sequence are positive integers Let F be the boundary and M, N be any interior points of a triangle ABC. Consider the function 3 $f_{M,N}: F \to R$ defined by $f_{M,N}(P) = MP^2 + NP^2$ and let $\eta_{M,N}$ be the number of points P for which fM, N attains its minimum. (a) Prove that $1 \leq \eta_{M,N} \leq 3$. (b) If M is fixed, find the locus of N for which $\eta_{M,N} > 1$. (c) Prove that the locus of M for which there are points N such that $\eta_{M,N} = 3$ is the interior of

a tangent hexagon.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.