Art of Problem Solving

AoPS Community

Switzerland Team Selection Test 1998

www.artofproblemsolving.com/community/c1076406
by parmenides51

- Day 1

1 A function $f: R-\{0\} \rightarrow R$ has the following properties:
(i) $f(x)-f(y)=f(x) f\left(\frac{1}{y}\right)-f(y) f\left(\frac{1}{x}\right)$ for all $x, y \neq 0$,
(ii) f takes the value $\frac{1}{2}$ at least once.

Determine $f(-1)$.
Prove that f is a periodic function
2 Find all nonnegative integer solutions (x, y, z) of the equation $\frac{1}{x+2}+\frac{1}{y+2}=\frac{1}{2}+\frac{1}{z+2}$
3 Given positive numbers a, b, c, find the minimum of the function $f(x)=\sqrt{a^{2}+x^{2}}+\sqrt{(b-x)^{2}+c^{2}}$.

4 Find all numbers n for which it is possible to cut a square into n smaller squares.
$5 \quad$ Points A and B are chosen on a circle k. Let AP and $B Q$ be segments of the same length tangent to k, drawn on different sides of line $A B$. Prove that the line $A B$ bisects the segment $P Q$.

- Day 2

6 Find all prime numbers p for which $p^{2}+11$ has exactly six positive divisors.
7 Consider an $n \times n$ matrix whose entry at the intersection of the i-th row and the j-th column equals $i+j-1$. What is the largest possible value of the product of n entries of the matrix, no two of which are in the same row or column?

8 Let $\triangle A B C$ be an equilateral triangle and let P be a point in its interior. Let the lines $A P, B P, C P$ meet the sides $B C, C A, A B$ in the points X, Y, Z respectively. Prove that $X Y \cdot Y Z \cdot Z X \geq$ $X B \cdot Y C \cdot Z A$.

9 If x and y are positive numbers, prove the inequality $\frac{x}{x^{4}+y^{2}}+\frac{y}{x^{2}+y^{4}} \leq \frac{1}{x y}$

10 5. Let $f: R \rightarrow R$ be a function that satisfies for all $x \in R$
(i) $|f(x)| \leq 1$, and
(ii) $f\left(x+\frac{13}{42}\right)+f(x)=f\left(x+\frac{1}{6}\right)+f\left(x+\frac{1}{7}\right)$

Prove that f is a periodic function

