Art of Problem Solving

AoPS Community

Switzerland Team Selection Test 2003

www.artofproblemsolving.com/community/c1076415
by parmenides51, ThirdTimeLucky

- Day 1

1 Real numbers x, y, a satisfy the equations $x+y=x^{3}+y^{3}=x^{5}+y^{5}=a$.
Find all possible values of a.
2 In an acute-angled triangle $A B C, E$ and F are the feet of the altitudes from B and C, and G and H are the projections of B and C on $E F$, respectively. Prove that $H E=F G$.

3 Find the largest real number C_{1} and the smallest real number C_{2}, such that, for all reals a, b, c, d, e, we have

$$
C_{1}<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+e}+\frac{e}{e+a}<C_{2}
$$

$4 \quad$ Find the largest natural number n that divides $a^{25}-a$ for all integers a.
5 There are n pieces on the squares of a 5×9 board, at most one on each square at any time during the game. A move in the game consists of simultaneously moving each piece to a neighboring square by side, under the restriction that a piece having been moved horizontally in the previous move must be moved vertically and vice versa. Find the greatest value of n for which there exists an initial position starting at which the game can be continued until the end of the world.

- Day 2

6 Let a, b, c be positive real numbers satisfying $a+b+c=2$. Prove the inequality

$$
\frac{1}{1+a b}+\frac{1}{1+b c}+\frac{1}{1+c a} \geq \frac{27}{13}
$$

7 Find all polynomials $Q(x)=a x^{2}+b x+c$ with integer coefficients for which there exist three different prime numbers p_{1}, p_{2}, p_{3} such that $\left|Q\left(p_{1}\right)\right|=\left|Q\left(p_{2}\right)\right|=\left|Q\left(p_{3}\right)\right|=11$.

8 Let $A_{1} A_{2} A_{3}$ be a triangle and ω_{1} be a circle passing through A_{1} and A_{2}. Suppose that there are circles $\omega_{2}, \ldots, \omega_{7}$ such that:
(a) ω_{k} passes through A_{k} and A_{k+1} for $k=2,3, \ldots, 7$, where $A_{i}=A_{i+3}$,
(b) ω_{k} and ω_{k+1} are externally tangent for $k=1,2, \ldots, 6$.

Prove that $\omega_{1}=\omega_{7}$.

9 Given integers $0<a_{1}<a_{2}<\ldots<a_{101}<5050$, prove that one can always choose for different numbers $a_{k}, a_{l}, a_{m}, a_{n}$ such that $5050 \mid a_{k}+a_{l}-a_{m}-a_{n}$

10 Find all strictly monotonous functions $f: N \rightarrow N$ that satisfy $f(f(n))=3 n$ for all $n \in N$.

