

AoPS Community

2003 Switzerland Team Selection Test

Switzerland Team Selection Test 2003

www.artofproblemsolving.com/community/c1076415 by parmenides51, ThirdTimeLucky

-	Day 1
-	Day I

- 1 Real numbers x, y, a satisfy the equations $x + y = x^3 + y^3 = x^5 + y^5 = a$. Find all possible values of a.
- 2 In an acute-angled triangle ABC, E and F are the feet of the altitudes from B and C, and G and H are the projections of B and C on EF, respectively. Prove that HE = FG.
- **3** Find the largest real number C_1 and the smallest real number C_2 , such that, for all reals a, b, c, d, e, we have

$$C_1 < \frac{a}{a+b} + \frac{b}{b+c} + \frac{c}{c+d} + \frac{d}{d+e} + \frac{e}{e+a} < C_2$$

- **4** Find the largest natural number *n* that divides $a^{25} a$ for all integers *a*.
- 5 There are *n* pieces on the squares of a 5×9 board, at most one on each square at any time during the game. A move in the game consists of simultaneously moving each piece to a neighboring square by side, under the restriction that a piece having been moved horizontally in the previous move must be moved vertically and vice versa. Find the greatest value of *n* for which there exists an initial position starting at which the game can be continued until the end of the world.
- Day 2
- **6** Let a, b, c be positive real numbers satisfying a + b + c = 2. Prove the inequality

$$\frac{1}{1+ab} + \frac{1}{1+bc} + \frac{1}{1+ca} \ge \frac{27}{13}$$

- **7** Find all polynomials $Q(x) = ax^2 + bx + c$ with integer coefficients for which there exist three different prime numbers p_1, p_2, p_3 such that $|Q(p_1)| = |Q(p_2)| = |Q(p_3)| = 11$.
- 8 Let $A_1A_2A_3$ be a triangle and ω_1 be a circle passing through A_1 and A_2 . Suppose that there are circles $\omega_2, ..., \omega_7$ such that: (a) ω_k passes through A_k and A_{k+1} for k = 2, 3, ..., 7, where $A_i = A_{i+3}$, (b) ω_k and ω_{k+1} are externally tangent for k = 1, 2, ..., 6. Prove that $\omega_1 = \omega_7$.

AoPS Community

2003 Switzerland Team Selection Test

9	Given integers $0 < a_1 < a_2 < < a_{101} < 5050$, prove that one can always choose for different
	numbers a_k, a_l, a_m, a_n such that $5050 a_k + a_l - a_m - a_n$

10 Find all strictly monotonous functions $f : N \to N$ that satisfy f(f(n)) = 3n for all $n \in N$.

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.