Art of Problem Solving

AoPS Community

Switzerland Team Selection Test 2004

www.artofproblemsolving.com/community/c1076416
by parmenides51, Valiowk, Beat, Jumbler, orl

- Day 1

1 Let S be the set of all n-tuples $\left(X_{1}, \ldots, X_{n}\right)$ of subsets of the set $\{1,2, . ., 1000\}$, not necessarily different and not necessarily nonempty. For $a=\left(X_{1}, \ldots, X_{n}\right)$ denote by $E(a)$ the number of elements of $X_{1} \cup \ldots \cup X_{n}$. Find an explicit formula for the sum $\sum_{a \in S} E(a)$

2 Find the largest natural number n for which $4^{995}+4^{1500}+4^{n}$ is a square.
3 Let $A B C$ be an isosceles triangle with $A C=B C$, whose incentre is I. Let P be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through P parallel to $C A$ and $C B$ meet $A B$ at D and E, respectively. The line through P parallel to $A B$ meets $C A$ and $C B$ at F and G, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.

Proposed by Hojoo Lee, Korea

- Day 2

4 Second Test, May 16
Let a, b, and c be positive real numbers such that $a b c=1$. Prove that $\frac{a b}{a^{5}+b^{5}+a b}+\frac{b c}{b^{5}+c^{5}+b c}+$ $\frac{c a}{c^{5}+a^{5}+c a} \leq 1$.
When does equality hold?
5 A brick has the shape of a cube of size 2 with one corner unit cube removed. Given a cube of side 2^{n} divided into unit cubes from which an arbitrary unit cube is removed, show that the remaining figure can be built using the described bricks.

6 Find all finite sequences $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ such that for every $j, 0 \leq j \leq n, x_{j}$ equals the number of times j appears in the sequence.

```
- Day 3
```

7 The real numbers a, b, c, d satisfy the equations: $a=\sqrt{45-\sqrt{21-a}}, b=\sqrt{45+\sqrt{21-b}}, c=$ $\sqrt{45-\sqrt{21+c}}, d=\sqrt{45+\sqrt{21+d}}$.
Prove that $a b c d=2004$.

8 Let m be a fixed integer greater than 1 . The sequence $x_{0}, x_{1}, x_{2}, \ldots$ is defined as follows:

$$
x_{i}= \begin{cases}2^{i} & \text { if } 0 \leq i \leq m-1 \\ \sum_{j=1}^{m} x_{i-j} & \text { if } i \geq m\end{cases}
$$

Find the greatest k for which the sequence contains k consecutive terms divisible by m.
Proposed by Marcin Kuczma, Poland
9 Let A_{1}, \ldots, A_{n} be different subsets of an n-element set X. Show that there exists $x \in X$ such that the sets $A_{1}-\{x\}, A_{2}-\{x\}, \ldots, A_{n}-\{x\}$ are all different.

- Day 4

10 In an acute-angled triangle $A B C$ the altitudes $A U, B V, C W$ intersect at H.
Points X, Y, Z, different from H, are taken on segments $A U, B V$, and $C W$, respectively.
(a) Prove that if X, Y, Z and H lie on a circle, then the sum of the areas of triangles $A B Z, A Y C, X B C$ equals the area of $A B C$.
(b) Prove the converse of (a).

11 Find all injective functions $f: R \rightarrow R$ such that for all real $x \neq y, f\left(\frac{x+y}{x-y}\right)=\frac{f(x)+f(y)}{f(x)-f(y)}$
12 Find all natural numbers which can be written in the form $\frac{(a+b+c)^{2}}{a b c}$, where $a, b, c \in N$.

